Spaces:
Running
Running
from src.preprocessing.preprocessing import compute_embedding | |
from src.postprocessing.postprocessing import animate_logo | |
from AnimationTransformer import AnimationTransformer | |
from AnimationTransformer import predict | |
import torch.nn as torch | |
import torch | |
import pandas as pd | |
def animateLogo(path : str): | |
#transformer | |
NUM_HEADS = 6 # Dividers of 282: {1, 2, 3, 6, 47, 94, 141, 282} | |
NUM_ENCODER_LAYERS = 2 | |
NUM_DECODER_LAYERS = 8 | |
DROPOUT=0.1 | |
# CONSTANTS | |
FEATURE_DIM = 282 | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
print(device) | |
model = AnimationTransformer( | |
dim_model=FEATURE_DIM, | |
num_heads=NUM_HEADS, | |
num_encoder_layers=NUM_ENCODER_LAYERS, | |
num_decoder_layers=NUM_DECODER_LAYERS, | |
dropout_p=DROPOUT, | |
use_positional_encoder=True | |
).to(device) | |
model.load_state_dict(torch.load("models/animation_transformer.pth", map_location=torch.device('cpu'))) | |
df = compute_embedding(path, "src/preprocessing/deepsvg/deepsvg_models/deepSVG_hierarchical_ordered.pth.tar") | |
df = df.drop("animation_id", axis=1) | |
df = pd.concat([df, pd.DataFrame(0, index=df.index, columns=range(df.shape[1], df.shape[1] + 26))], axis=1, ignore_index=True).astype(float) | |
inp = torch.tensor(df.values) | |
print(inp, inp.shape) | |
sos_token = torch.zeros(282) | |
sos_token[256] = 1 | |
result = predict(model, inp, sos_token=sos_token, device=device, max_length=inp.shape[0], eos_scaling=1) | |
result = pd.DataFrame(result[1:, -26:].cpu().detach().numpy()) | |
result = pd.DataFrame({"model_output" : [row.tolist() for index, row in result.iterrows()]}) | |
result["animation_id"] = range(len(result)) | |
print(result, path) | |
animate_logo(result, path) | |
#logo = "data/examples/logo_181.svg" | |
#animateLogo(logo) |