Daniel Gil-U Fuhge
add model files
e17e8cc
raw
history blame
2.7 kB
"""This code is taken from <https://github.com/alexandre01/deepsvg>
by Alexandre Carlier, Martin Danelljan, Alexandre Alahi and Radu Timofte
from the paper >https://arxiv.org/pdf/2007.11301.pdf>
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from src.preprocessing.deepsvg.deepsvg_difflib.tensor import SVGTensor
from .model_utils import _get_padding_mask, _get_visibility_mask
from .model_config import _DefaultConfig
class SVGLoss(nn.Module):
def __init__(self, cfg: _DefaultConfig):
super().__init__()
self.cfg = cfg
self.args_dim = 2 * cfg.args_dim if cfg.rel_targets else cfg.args_dim + 1
self.register_buffer("cmd_args_mask", SVGTensor.CMD_ARGS_MASK)
def forward(self, output, labels, weights):
loss = 0.
res = {}
# VAE
if self.cfg.use_vae:
mu, logsigma = output["mu"], output["logsigma"]
loss_kl = -0.5 * torch.mean(1 + logsigma - mu.pow(2) - torch.exp(logsigma))
loss_kl = loss_kl.clamp(min=weights["kl_tolerance"])
loss += weights["loss_kl_weight"] * loss_kl
res["loss_kl"] = loss_kl
# Target & predictions
tgt_commands, tgt_args = output["tgt_commands"], output["tgt_args"]
visibility_mask = _get_visibility_mask(tgt_commands, seq_dim=-1)
padding_mask = _get_padding_mask(tgt_commands, seq_dim=-1, extended=True) * visibility_mask.unsqueeze(-1)
command_logits, args_logits = output["command_logits"], output["args_logits"]
# 2-stage visibility
if self.cfg.decode_stages == 2:
visibility_logits = output["visibility_logits"]
loss_visibility = F.cross_entropy(visibility_logits.reshape(-1, 2), visibility_mask.reshape(-1).long())
loss += weights["loss_visibility_weight"] * loss_visibility
res["loss_visibility"] = loss_visibility
# Commands & args
tgt_commands, tgt_args, padding_mask = tgt_commands[..., 1:], tgt_args[..., 1:, :], padding_mask[..., 1:]
mask = self.cmd_args_mask[tgt_commands.long()]
loss_cmd = F.cross_entropy(command_logits[padding_mask.bool()].reshape(-1, self.cfg.n_commands), tgt_commands[padding_mask.bool()].reshape(-1).long())
loss_args = F.cross_entropy(args_logits[mask.bool()].reshape(-1, self.args_dim), tgt_args[mask.bool()].reshape(-1).long() + 1) # shift due to -1 PAD_VAL
loss += weights["loss_cmd_weight"] * loss_cmd \
+ weights["loss_args_weight"] * loss_args
res.update({
"loss": loss,
"loss_cmd": loss_cmd,
"loss_args": loss_args
})
return res