Spaces:
Running
Running
File size: 30,065 Bytes
e17e8cc a09c67b 3cc8ee8 a09c67b e17e8cc a54d9bd e17e8cc 85cd824 e17e8cc 85cd824 e17e8cc 85cd824 e17e8cc 85cd824 e17e8cc 85cd824 e17e8cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 |
import pandas as pd
import numpy as np
import random
import os
import sys
from xml.dom import minidom
from collections import defaultdict
sys.path.append(os.getcwd())
from src.postprocessing.get_svg_size_pos import get_svg_bbox, get_path_bbox, get_midpoint_of_path_bbox
from src.postprocessing.get_style_attributes import get_style_attributes_path
random.seed(0)
filter_id = 0
def animate_logo(model_output: pd.DataFrame, logo_path: str):
# Add animation id
document = minidom.parse(logo_path)
paths = document.getElementsByTagName('path')
for i in range(len(paths)):
paths[i].setAttribute('animation_id', str(i))
with open(logo_path, 'wb') as svg_file:
svg_file.write(document.toxml(encoding='iso-8859-1'))
logo_xmin, logo_xmax, logo_ymin, logo_ymax = get_svg_bbox(logo_path)
# ---- Normalize model output ----
animations_by_id = defaultdict(list)
for row in model_output.iterrows():
# Structure animations by animation id
animation_id = row[1]['animation_id']
output = row[1]['model_output']
animations_by_id[animation_id].append(output)
total_animations = []
for animation_id in animations_by_id.keys():
print(animation_id)
try:
path_xmin, path_xmax, path_ymin, path_ymax = get_path_bbox(logo_path, animation_id)
except:
path_xmin, path_xmax, path_ymin, path_ymax = 0, 0, 0, 0
xmin = logo_xmin - path_xmin
xmax = logo_xmax - path_xmax
ymin = logo_ymin - path_ymin
ymax = logo_ymax - path_ymax
# Structure animations by type (check first 10 parameters)
animations_by_type = defaultdict(list)
for animation in animations_by_id[animation_id]:
if animation[0] == 1:
# EOS
continue
try:
animation_type = animation[1:10].index(1)
animations_by_type[animation_type].append(animation)
except:
# No value found
print('Model output invalid: no animation type found')
return
for animation_type in animations_by_type.keys():
# Set up list of animations for later distribution
current_animations = []
# Sort animations by begin
animations_by_type[animation_type].sort(key=lambda l : l[10]) # Sort by begin
# For every animation, check consistency of begin and duration, then set parameters
for i in range(len(animations_by_type[animation_type])):
# Check if begin is equal to next animation's begin - in this case, set second begin to average of first and third animation
# Get next animation with different begin time
if len(animations_by_type[animation_type]) > 1:
j = 1
next_animation = animations_by_type[animation_type][j]
while (i + j) < len(animations_by_type[animation_type]) and animations_by_type[animation_type][i][10] == next_animation[10]:
j += 1
next_animation = animations_by_type[animation_type][j]
if j != 1:
# Get difference
difference = animations_by_type[animation_type][j][10] - animations_by_type[animation_type][i][10]
interval = difference / (j - i)
factor = 0
for a in range(i, j):
animations_by_type[animation_type][a][10] = animations_by_type[animation_type][i][10] + interval * factor
factor += 1
# Check if duration and begin of next animation are consistent - if not, shorten duration
if i < len(animations_by_type[animation_type]) - 1:
max_duration = animations_by_type[animation_type][i+1][10] - animations_by_type[animation_type][i][10]
if animations_by_type[animation_type][i][11] > max_duration:
animations_by_type[animation_type][i][11] = max_duration
# Get general parameters
begin = animations_by_type[animation_type][i][10]
dur = animations_by_type[animation_type][i][10]
# Check type and call method
if animation_type == 1:
# animation: translate
from_x = animations_by_type[animation_type][i][12]
from_y = animations_by_type[animation_type][i][13]
# Check if there is a next translate animation
if i < len(animations_by_type[animation_type]) - 1:
# animation endpoint is next translate animation's starting point
to_x = animations_by_type[animation_type][i+1][12]
to_y = animations_by_type[animation_type][i+1][13]
else:
# animation endpoint is final position of object
to_x = 0
to_y = 0
# Check if parameters are within boundary
if from_x < xmin:
from_x = xmin
elif from_x > xmax:
from_x = xmax
if from_y < ymin:
from_y = ymin
elif from_y > ymax:
from_y = ymax
if to_x < xmin:
to_x = xmin
elif to_x > xmax:
to_x = xmax
if to_y < ymin:
to_y = ymin
elif to_y > ymax:
to_y = ymax
# Append animation to list
current_animations.append(_animation_translate(animation_id, begin, dur, from_x, from_y, to_x, to_y))
elif animation_type == 2:
print('curve')
from_x = animations_by_type[animation_type][i][12]
from_y = animations_by_type[animation_type][i][13]
via_x = animations_by_type[animation_type][i][14]
via_y = animations_by_type[animation_type][i][15]
# Check if there is a next curve animation
if i < len(animations_by_type[animation_type]) - 1:
# animation endpoint is next curve animation's starting point
to_x = animations_by_type[animation_type][i+1][12]
to_y = animations_by_type[animation_type][i+1][13]
else:
# animation endpoint is final position of object
to_x = 0
to_y = 0
# Check if parameters are within boundary
if from_x < xmin:
from_x = xmin
elif from_x > xmax:
from_x = xmax
if from_y < ymin:
from_y = ymin
elif from_y > ymax:
from_y = ymax
if via_x < xmin:
via_x = xmin
elif via_x > xmax:
via_x = xmax
if via_y < ymin:
via_y = ymin
elif via_y > ymax:
via_y = ymax
if to_x < xmin:
to_x = xmin
elif to_x > xmax:
to_x = xmax
if to_y < ymin:
to_y = ymin
elif to_y > ymax:
to_y = ymax
# Append animation to list
current_animations.append(_animation_curve(animation_id, begin, dur, from_x, from_y, via_x, via_y, to_x, to_y))
elif animation_type == 3:
# animation: scale
from_f = animations_by_type[animation_type][i][16]
if from_f <= 0:
from_f = 0.0000001
# Check if there is a next scale animation
if i < len(animations_by_type[animation_type]) - 1:
# animation endpoint is next scale animation's starting point
to_f = animations_by_type[animation_type][i+1][16]
else:
# animation endpoint is final position of object
to_f = 1
current_animations.append(_animation_scale(animation_id, begin, dur, from_f, to_f))
elif animation_type == 4:
# animation: rotate
from_degree = animations_by_type[animation_type][i][17]
if from_degree < 0:
from_degree = 0
elif from_degree > 360:
from_degree = 360
# Get midpoints
midpoints = get_midpoint_of_path_bbox(logo_path, animation_id)
# Check if there is a next scale animation
if i < len(animations_by_type[animation_type]) - 1:
# animation endpoint is next scale animation's starting point
to_degree = animations_by_type[animation_type][i+1][17]
else:
# animation endpoint is final position of object
to_degree = 360
current_animations.append(_animation_rotate(animation_id, begin, dur, from_degree, to_degree, midpoints))
elif animation_type == 5:
# animation: skewX
from_x = animations_by_type[animation_type][i][18]
# Check if there is a next skewX animation
if i < len(animations_by_type[animation_type]) - 1:
# animation endpoint is next skewX animation's starting point
to_x = animations_by_type[animation_type][i+1][18]
else:
# animation endpoint is final position of object
to_x = 1
# Check if parameters are within boundary
if from_x < xmin:
from_x = xmin
elif from_x > xmax:
from_x = xmax
if to_x < xmin:
to_x = xmin
elif to_x > xmax:
to_x = xmax
current_animations.append(_animation_skewX(animation_id, begin, dur, from_x, to_x))
elif animation_type == 6:
# animation: skewY
from_y = animations_by_type[animation_type][i][19]
# Check if there is a next skewY animation
if i < len(animations_by_type[animation_type]) - 1:
# animation endpoint is next skewY animation's starting point
to_y = animations_by_type[animation_type][i+1][19]
else:
# animation endpoint is final position of object
to_y = 1
# Check if parameters are within boundary
if from_y < ymin:
from_y = ymin
elif from_y > ymax:
from_y = ymax
if to_y < ymin:
to_y = ymin
elif to_y > ymax:
to_y = ymax
current_animations.append(_animation_skewY(animation_id, begin, dur, from_y, to_y))
elif animation_type == 7:
# animation: fill
from_rgb = '#' + _convert_to_hex_str(animations_by_type[animation_type][i][20]) + _convert_to_hex_str(animations_by_type[animation_type][i][21]) + _convert_to_hex_str(animations_by_type[animation_type][i][22])
# Check if there is a next fill animation
if i < len(animations_by_type[animation_type]) - 1:
# animation endpoint is next fill animation's starting point
to_rgb = '#' + _convert_to_hex_str(animations_by_type[animation_type][i+1][20]) + _convert_to_hex_str(animations_by_type[animation_type][i+1][21]) + _convert_to_hex_str(animations_by_type[animation_type][i+1][22])
else:
fill_style = get_style_attributes_path(logo_path, animation_id, "fill")
stroke_style = get_style_attributes_path(logo_path, animation_id, "stroke")
if fill_style == "none" and stroke_style != "none":
color_hex = stroke_style
else:
color_hex = fill_style
to_rgb = color_hex
current_animations.append(_animation_fill(animation_id, begin, dur, from_rgb, to_rgb))
elif animation_type == 8:
# animation: opacity
from_f = animations_by_type[animation_type][i][23] / 100 # percent
if from_f < 0:
from_f = 0
elif from_f > 1:
from_f = 1
# Check if there is a next opacity animation
if i < len(animations_by_type[animation_type]) - 1:
# animation endpoint is next opacity animation's starting point
to_f = animations_by_type[animation_type][i+1][23] / 100 # percent
else:
# animation endpoint is final position of object
to_f = 1
current_animations.append(_animation_opacity(animation_id, begin, dur, from_f, to_f))
elif animation_type == 9:
# animation: blur
from_f = animations_by_type[animation_type][i][24]
if from_f <= 0:
from_f = 1
# Check if there is a next blur animation
if i < len(animations_by_type[animation_type]) - 1:
# animation endpoint is next blur animation's starting point
to_f = animations_by_type[animation_type][i+1][24]
else:
# animation endpoint is final position of object
to_f = 1
current_animations.append(_animation_blur(animation_id, begin, dur, from_f, to_f))
total_animations += current_animations
# Shift begin - TODO test
min_b = np.inf
for animation in total_animations:
print(animation["begin"], min_b)
if float(animation["begin"]) < float(min_b):
min_b = animation["begin"]
for animation in total_animations:
animation["begin"] = float(animation["begin"]) - float(min_b)
_insert_animations(total_animations, logo_path, logo_path)
def _convert_to_hex_str(i: int):
h = str(hex(int(i)))[2:]
if i < 16:
h = '0' + h
return h
def _animation_translate(animation_id: int, begin: float, dur: float, from_x: int, from_y: int, to_x: int, to_y: int):
print('animation: translate')
animation_dict = {}
animation_dict['animation_id'] = animation_id
animation_dict['animation_type'] = 'animate_transform'
animation_dict['attributeName'] = 'transform'
animation_dict['attributeType'] = 'XML'
animation_dict['type'] = 'translate'
animation_dict['begin'] = str(begin)
animation_dict['dur'] = str(dur)
animation_dict['fill'] = 'freeze'
animation_dict['from'] = f'{from_x} {from_y}'
animation_dict['to'] = f'{to_x} {to_y}'
return animation_dict
def _animation_curve(animation_id: int, begin: float, dur: float, from_x: int, from_y: int, via_x: int, via_y: int, to_x: int, to_y: int):
print('animation: curve')
animation_dict = {}
animation_dict['animation_id'] = animation_id
animation_dict['animation_type'] = 'animate_motion'
animation_dict['begin'] = str(begin)
animation_dict['dur'] = str(dur)
animation_dict['fill'] = 'freeze'
animation_dict['from'] = f'{from_x} {from_y}'
animation_dict['via'] = f'{via_x} {via_y}'
animation_dict['to'] = f'{to_x} {to_y}'
return animation_dict
def _animation_scale(animation_id: int, begin: float, dur: float, from_f: float, to_f: float):
print('animation: scale')
animation_dict = {}
animation_dict['animation_id'] = animation_id
animation_dict['animation_type'] = 'animate_transform'
animation_dict['attributeName'] = 'transform'
animation_dict['attributeType'] = 'XML'
animation_dict['type'] = 'scale'
animation_dict['begin'] = str(begin)
animation_dict['dur'] = str(dur)
animation_dict['fill'] = 'freeze'
animation_dict['from'] = str(from_f)
animation_dict['to'] = str(to_f)
return animation_dict
def _animation_rotate(animation_id: int, begin: float, dur: float, from_degree: int, to_degree: int, midpoints: list):
print('animation: rotate')
animation_dict = {}
animation_dict['animation_id'] = animation_id
animation_dict['animation_type'] = 'animate_transform'
animation_dict['attributeName'] = 'transform'
animation_dict['attributeType'] = 'XML'
animation_dict['type'] = 'rotate'
animation_dict['begin'] = str(begin)
animation_dict['dur'] = str(dur)
animation_dict['fill'] = 'freeze'
animation_dict['from'] = f'{from_degree} {midpoints[0]} {midpoints[1]}'
animation_dict['to'] = f'{to_degree} {midpoints[0]} {midpoints[1]}'
return animation_dict
def _animation_skewX(animation_id: int, begin: float, dur: float, from_i: int, to_i: int):
print('animation: skew')
animation_dict = {}
animation_dict['animation_id'] = animation_id
animation_dict['animation_type'] = 'animate_transform'
animation_dict['attributeName'] = 'transform'
animation_dict['attributeType'] = 'XML'
animation_dict['type'] = 'skewX'
animation_dict['begin'] = str(begin)
animation_dict['dur'] = str(dur)
animation_dict['fill'] = 'freeze'
animation_dict['from'] = f'{from_i}'
animation_dict['to'] = f'{to_i}'
return animation_dict
def _animation_skewY(animation_id: int, begin: float, dur: float, from_i: int, to_i: int):
print('animation: skew')
animation_dict = {}
animation_dict['animation_id'] = animation_id
animation_dict['animation_type'] = 'animate_transform'
animation_dict['attributeName'] = 'transform'
animation_dict['attributeType'] = 'XML'
animation_dict['type'] = 'skewY'
animation_dict['begin'] = str(begin)
animation_dict['dur'] = str(dur)
animation_dict['fill'] = 'freeze'
animation_dict['from'] = f'{from_i}'
animation_dict['to'] = f'{to_i}'
return animation_dict
def _animation_fill(animation_id: int, begin: float, dur: float, from_rgb: str, to_rgb: str):
print('animation: fill')
animation_dict = {}
animation_dict['animation_id'] = animation_id
animation_dict['animation_type'] = 'animate'
animation_dict['attributeName'] = 'fill'
animation_dict['attributeType'] = 'XML'
animation_dict['type'] = 'fill'
animation_dict['begin'] = str(begin)
animation_dict['dur'] = str(dur)
animation_dict['fill'] = 'freeze'
animation_dict['from'] = from_rgb
animation_dict['to'] = to_rgb
return animation_dict
def _animation_opacity(animation_id: int, begin: float, dur: float, from_f: float, to_f: float):
print('animation: opacity')
animation_dict = {}
animation_dict['animation_id'] = animation_id
animation_dict['animation_type'] = 'animate'
animation_dict['attributeName'] = 'opacity'
animation_dict['attributeType'] = 'XML'
animation_dict['type'] = 'opacity'
animation_dict['begin'] = str(begin)
animation_dict['dur'] = str(dur)
animation_dict['fill'] = 'freeze'
animation_dict['from'] = str(from_f)
animation_dict['to'] = str(to_f)
return animation_dict
def _animation_blur(animation_id: int, begin: float, dur: float, from_f: float, to_f: float):
print('animation: blur')
animation_dict = {}
animation_dict['animation_id'] = animation_id
animation_dict['animation_type'] = 'animate_filter'
animation_dict['attributeName'] = 'transform'
animation_dict['attributeType'] = 'XML'
animation_dict['type'] = 'blur'
animation_dict['begin'] = str(begin)
animation_dict['dur'] = str(dur)
animation_dict['fill'] = 'freeze'
animation_dict['from'] = str(from_f)
animation_dict['to'] = str(to_f)
return animation_dict
def _insert_animations(animations: list, path: str, target_path: str):
print('Insert animations')
# Load XML
document = minidom.parse(path)
# Collect all elements
elements = document.getElementsByTagName('path') + document.getElementsByTagName('circle') + document.getElementsByTagName(
'ellipse') + document.getElementsByTagName('line') + document.getElementsByTagName(
'polygon') + document.getElementsByTagName('polyline') + document.getElementsByTagName(
'rect') + document.getElementsByTagName('text')
# Create statement
for animation in animations:
# Search for element
current_element = None
for element in elements:
if element.getAttribute('animation_id') == str(animation['animation_id']):
current_element = element
if current_element == None:
# Animation id not found - take next animation
continue
if animation['animation_type'] == 'animate_transform':
animate_statement = _create_animate_transform_statement(animation)
current_element.appendChild(document.createElement(animate_statement))
elif animation['animation_type'] == 'animate_motion':
animate_statement = _create_animate_motion_statement(animation)
current_element.appendChild(document.createElement(animate_statement))
elif animation['animation_type'] == 'animate':
animate_statement = _create_animate_statement(animation)
current_element.appendChild(document.createElement(animate_statement))
elif animation['animation_type'] == 'animate_filter':
filter_element, fe_element, animate_statement = _create_animate_filter_statement(animation, document)
defs = document.getElementsByTagName('defs')
current_defs = None
# Check if defs tag exists; create otherwise
if len(defs) == 0:
svg = document.getElementsByTagName('svg')[0]
current_defs = document.createElement('defs')
svg.appendChild(current_defs)
else:
current_defs = defs[0]
# Check if filter to be appended
if filter_element != None:
# Create filter
print('append filter')
current_defs.appendChild(filter_element)
# Check if FE to be created
if fe_element != None:
print('create fe statement')
# Check if filter set; else search
if filter_element == None:
# Search for filter
id = 'filter_' + str(animation['animation_id'])
for f in document.getElementsByTagName('filter'):
if f.getAttribute('id') == id:
filter_element = f
# Create FE
filter_element.appendChild(fe_element)
current_defs.appendChild(document.createElement(animate_statement))
current_element.setAttribute('filter', f'url(#filter_{animation["animation_id"]})')
# Save XML to target path
with open(target_path, 'wb') as f:
f.write(document.toprettyxml(encoding="iso-8859-1"))
def _create_animate_transform_statement(animation_dict: dict):
""" Set up animation statement from model output for ANIMATETRANSFORM animations
(Adapted from AnimateSVG)
"""
animation = f'animateTransform attributeName="transform" attributeType="XML" ' \
f'type="{animation_dict["type"]}" ' \
f'begin="{str(animation_dict["begin"])}" ' \
f'dur="{str(animation_dict["dur"])}" ' \
f'from="{str(animation_dict["from"])}" ' \
f'to="{str(animation_dict["to"])}" ' \
f'fill="{str(animation_dict["fill"])}" ' \
'additive="sum"'
return animation
def _create_animate_statement(animation_dict: dict):
""" Set up animation statement from model output for ANIMATE animations
(adapted from AnimateSVG)
"""
animation = f'animate attributeName="{animation_dict["type"]}" ' \
f'begin="{str(animation_dict["begin"])}" ' \
f'dur="{str(animation_dict["dur"])}" ' \
f'from="{str(animation_dict["from"])}" ' \
f'to="{str(animation_dict["to"])}" ' \
f'fill="{str(animation_dict["fill"])}" '\
'additive="sum"'
return animation
def _create_animate_motion_statement(animation_dict: dict):
""" Set up animatie motion statement from model output for ANIMATE_MOTION animations
"""
animation = f'animateMotion ' \
f'begin="{str(animation_dict["begin"])}" ' \
f'dur="{str(animation_dict["dur"])}" ' \
f'path="M{animation_dict["from"]}" Q{animation_dict["via"]} {animation_dict["to"]}' \
f'fill="{str(animation_dict["fill"])}" '\
'additive="sum"'
return animation
def _create_animate_filter_statement(animation_dict: dict, document: minidom.Document):
global filter_id
filter_id += 1
filter_element = None
fe_element = None
animate_statement = None
if animation_dict['type'] == 'blur':
# Check if filter already exists
filters = document.getElementsByTagName('filter')
current_filter = None
current_fe = None
for f in filters:
#print(f.getAttribute('id') == f'filter_{str(animation_dict["animation_id"])}')
if f.getAttribute('id') == f'filter_{str(animation_dict["animation_id"])}':
current_filter = f
fe_elements = document.getElementsByTagName('feGaussianBlur')
for fe in fe_elements:
if fe.getAttribute('id') == f'filter_blur_{str(animation_dict["animation_id"])}':
current_fe = fe
if current_filter == None:
filter_element = document.createElement('filter')
filter_element.setAttribute('id', f'filter_{str(animation_dict["animation_id"])}')
if current_fe == None:
fe_element = document.createElement('feGaussianBlur')
fe_element.setAttribute('id', f'filter_blur_{str(animation_dict["animation_id"])}')
fe_element.setAttribute('stdDeviation', '0')
animate_statement = f'animate href="#filter_blur_{str(animation_dict["animation_id"])}" ' \
f'attributeName="stdDeviation" ' \
f'begin="{str(animation_dict["begin"])}" ' \
f'dur="{str(animation_dict["dur"])}" ' \
f'from="{str(animation_dict["from"])}" ' \
f'to="{str(animation_dict["to"])}" ' \
f'fill="{str(animation_dict["fill"])}"'\
'additive="sum"'
return filter_element, fe_element, animate_statement
def randomly_animate_logo(logo_path: str, target_path: str, number_of_animations: int, previously_generated: pd.DataFrame = None):
# Creates model output equal to defined number of animations. They are then randomly distributed over the paths.
# Assign animation id to every path - TODO this changes the original logo!
document = minidom.parse(logo_path)
paths = document.getElementsByTagName('path') + document.getElementsByTagName('circle') + document.getElementsByTagName(
'ellipse') + document.getElementsByTagName('line') + document.getElementsByTagName(
'polygon') + document.getElementsByTagName('polyline') + document.getElementsByTagName(
'rect') + document.getElementsByTagName('text')
for i in range(len(paths)):
paths[i].setAttribute('animation_id', str(i))
with open(target_path, 'wb') as svg_file:
svg_file.write(document.toxml(encoding='iso-8859-1'))
# Create random animations
for i in range(0, number_of_animations):
animation_type = random.randint(0, 8) # Determine animation type (as of now only primitive animation types)
model_output = np.zeros(18)
model_output[animation_type] = 1 # Set animation type
# Set animation parameters
# model_output = [
# {
# 'animation_id': 1,
# 'model_output': [0, 0, 0, 0, 0, 0, 0, 1, 1, 10, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10]
# },
# {
# 'animation_id': 1,
# 'model_output': [0, 0, 0, 0, 0, 0, 0, 1, 5, 3, 4, 5, 2, 1, 2, 3, 4, 5, 6, 7, 1000, 20]
# }
# ]
# model_output = pd.DataFrame(model_output)
# #print(model_output)
# path = 'src/postprocessing/logo_0.svg'
# # Assign animation id to every path - TODO this changes the original logo!
# document = minidom.parse(path)
# paths = document.getElementsByTagName('path')
# for i in range(len(paths)):
# paths[i].setAttribute('animation_id', str(i))
# with open(path, 'wb') as svg_file:
# svg_file.write(document.toxml(encoding='iso-8859-1'))
# #print('Inserted animation id')
# animate_logo(model_output, path)
|