Spaces:
Running
Running
File size: 8,540 Bytes
e17e8cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
"""This code is taken from <https://github.com/alexandre01/deepsvg>
by Alexandre Carlier, Martin Danelljan, Alexandre Alahi and Radu Timofte
from the paper >https://arxiv.org/pdf/2007.11301.pdf>
"""
from src.preprocessing.deepsvg.deepsvg_config.config import _Config
from src.preprocessing.deepsvg.deepsvg_difflib.tensor import SVGTensor
from src.preprocessing.deepsvg.deepsvg_svglib.svg import SVG
from src.preprocessing.deepsvg.deepsvg_svglib.geom import Point
import math
import torch
import torch.utils.data
import random
from typing import List, Union
import pandas as pd
import os
import pickle
Num = Union[int, float]
class SVGDataset(torch.utils.data.Dataset):
def __init__(self, data_dir, meta_filepath, model_args, max_num_groups, max_seq_len, max_total_len=None,
filter_uni=None, filter_platform=None, filter_category=None, train_ratio=1.0, df=None, PAD_VAL=-1,
nb_augmentations=1, already_preprocessed=True):
self.data_dir = data_dir
self.already_preprocessed = already_preprocessed
self.MAX_NUM_GROUPS = max_num_groups
self.MAX_SEQ_LEN = max_seq_len
self.MAX_TOTAL_LEN = max_total_len
if max_total_len is None:
self.MAX_TOTAL_LEN = max_num_groups * max_seq_len
if df is None:
df = pd.read_csv(meta_filepath)
if len(df) > 0:
if filter_uni is not None:
df = df[df.uni.isin(filter_uni)]
if filter_platform is not None:
df = df[df.platform.isin(filter_platform)]
if filter_category is not None:
df = df[df.category.isin(filter_category)]
df = df[(df.nb_groups <= max_num_groups) & (df.max_len_group <= max_seq_len)]
if max_total_len is not None:
df = df[df.total_len <= max_total_len]
self.df = df.sample(frac=train_ratio) if train_ratio < 1.0 else df
self.model_args = model_args
self.PAD_VAL = PAD_VAL
self.nb_augmentations = nb_augmentations
def search_name(self, name):
return self.df[self.df.commonName.str.contains(name)]
def _filter_categories(self, filter_category):
self.df = self.df[self.df.category.isin(filter_category)]
@staticmethod
def _uni_to_label(uni):
if 48 <= uni <= 57:
return uni - 48
elif 65 <= uni <= 90:
return uni - 65 + 10
return uni - 97 + 36
@staticmethod
def _label_to_uni(label_id):
if 0 <= label_id <= 9:
return label_id + 48
elif 10 <= label_id <= 35:
return label_id + 65 - 10
return label_id + 97 - 36
@staticmethod
def _category_to_label(category):
categories = ['characters', 'free-icons', 'logos', 'alphabet', 'animals', 'arrows', 'astrology', 'baby', 'beauty',
'business', 'cinema', 'city', 'clothing', 'computer-hardware', 'crime', 'cultures', 'data', 'diy',
'drinks', 'ecommerce', 'editing', 'files', 'finance', 'folders', 'food', 'gaming', 'hands', 'healthcare',
'holidays', 'household', 'industry', 'maps', 'media-controls', 'messaging', 'military', 'mobile',
'music', 'nature', 'network', 'photo-video', 'plants', 'printing', 'profile', 'programming', 'science',
'security', 'shopping', 'social-networks', 'sports', 'time-and-date', 'transport', 'travel', 'user-interface',
'users', 'weather', 'flags', 'emoji', 'men', 'women']
return categories.index(category)
def get_label(self, idx=0, entry=None):
if entry is None:
entry = self.df.iloc[idx]
if "uni" in self.df.columns: # Font dataset
label = self._uni_to_label(entry.uni)
return torch.tensor(label)
elif "category" in self.df.columns: # Icons dataset
label = self._category_to_label(entry.category)
return torch.tensor(label)
return None
def idx_to_id(self, idx):
return self.df.iloc[idx].id
def entry_from_id(self, id):
return self.df[self.df.id == str(id)].iloc[0]
def _load_svg(self, icon_id):
svg = SVG.load_svg(os.path.join(self.data_dir, f"{icon_id}.svg"))
if not self.already_preprocessed:
svg.fill_(False)
svg.normalize().zoom(0.9)
svg.canonicalize()
svg = svg.simplify_heuristic()
return svg
def __len__(self):
return len(self.df) * self.nb_augmentations
def random_icon(self):
return self[random.randrange(0, len(self))]
def random_id(self):
idx = random.randrange(0, len(self)) % len(self.df)
return self.idx_to_id(idx)
def random_id_by_uni(self, uni):
df = self.df[self.df.uni == uni]
return df.id.sample().iloc[0]
def __getitem__(self, idx):
return self.get(idx, self.model_args)
@staticmethod
def _augment(svg, mean=False):
dx, dy = (0, 0) if mean else (5 * random.random() - 2.5, 5 * random.random() - 2.5)
factor = 0.7 if mean else 0.2 * random.random() + 0.6
return svg.zoom(factor).translate(Point(dx, dy))
@staticmethod
def simplify(svg, normalize=True):
svg.canonicalize(normalize=normalize)
svg = svg.simplify_heuristic()
return svg.normalize()
@staticmethod
def preprocess(svg, augment=True, numericalize=True, mean=False):
if augment:
svg = SVGDataset._augment(svg, mean=mean)
if numericalize:
return svg.numericalize(256)
return svg
def get(self, idx=0, model_args=None, random_aug=True, id=None, svg: SVG=None):
if id is None:
idx = idx % len(self.df)
id = self.idx_to_id(idx)
if svg is None:
svg = self._load_svg(id)
svg = SVGDataset.preprocess(svg, augment=random_aug)
t_sep, fillings = svg.to_tensor(concat_groups=False, PAD_VAL=self.PAD_VAL), svg.to_fillings()
# Note: DeepSVG can only handle 8 paths in a SVG and 30 sequences per path
if len(t_sep) > 8:
#print(f"SVG {id} has more than 30 segments.")
t_sep = t_sep[0:8]
fillings = fillings[0:8]
for i in range(len(t_sep)):
if len(t_sep[i]) > 30:
#print(f"SVG {id}: Path nr {i} has more than 30 segments.")
t_sep[i] = t_sep[i][0:30]
label = self.get_label(idx)
return self.get_data(t_sep, fillings, model_args=model_args, label=label)
def get_data(self, t_sep, fillings, model_args=None, label=None):
res = {}
if model_args is None:
model_args = self.model_args
pad_len = max(self.MAX_NUM_GROUPS - len(t_sep), 0)
t_sep.extend([torch.empty(0, 14)] * pad_len)
fillings.extend([0] * pad_len)
t_grouped = [SVGTensor.from_data(torch.cat(t_sep, dim=0), PAD_VAL=self.PAD_VAL).add_eos().add_sos().pad(
seq_len=self.MAX_TOTAL_LEN + 2)]
t_sep = [SVGTensor.from_data(t, PAD_VAL=self.PAD_VAL, filling=f).add_eos().add_sos().pad(seq_len=self.MAX_SEQ_LEN + 2) for
t, f in zip(t_sep, fillings)]
for arg in set(model_args):
if "_grouped" in arg:
arg_ = arg.split("_grouped")[0]
t_list = t_grouped
else:
arg_ = arg
t_list = t_sep
if arg_ == "tensor":
res[arg] = t_list
if arg_ == "commands":
res[arg] = torch.stack([t.cmds() for t in t_list])
if arg_ == "args_rel":
res[arg] = torch.stack([t.get_relative_args() for t in t_list])
if arg_ == "args":
res[arg] = torch.stack([t.args() for t in t_list])
if "filling" in model_args:
res["filling"] = torch.stack([torch.tensor(t.filling) for t in t_sep]).unsqueeze(-1)
if "label" in model_args:
res["label"] = label
return res
def load_dataset(cfg: _Config, already_preprocessed=True):
dataset = SVGDataset(cfg.data_dir, cfg.meta_filepath, cfg.model_args, cfg.max_num_groups, cfg.max_seq_len, cfg.max_total_len,
cfg.filter_uni, cfg.filter_platform, cfg.filter_category, cfg.train_ratio,
nb_augmentations=cfg.nb_augmentations, already_preprocessed=already_preprocessed)
return dataset
|