Spaces:
Running
Running
File size: 12,150 Bytes
d9c6096 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import random
from typing import Tuple, Any
import numpy as np
import pandas as pd
import torch
# SEQUENCE GENERATION
PADDING_VALUE = float('-100')
# ANIMATION_PARAMETER_INDICES = {
# 0: [], # EOS
# 1: [10, 11, 12, 13], # translate: begin, dur, x, y
# 2: [10, 11, 14, 15], # curve: begin, dur, via_x, via_y
# 3: [10, 11, 16], # scale: begin, dur, from_factor
# 4: [10, 11, 17], # rotate: begin, dur, from_degree
# 5: [10, 11, 18], # skewX: begin, dur, from_x
# 6: [10, 11, 19], # skewY: begin, dur, from_y
# 7: [10, 11, 20, 21, 22], # fill: begin, dur, from_r, from_g, from_b
# 8: [10, 11, 23], # opcaity: begin, dur, from_f
# 9: [10, 11, 24], # blur: begin, dur, from_f
# }
ANIMATION_PARAMETER_INDICES = {
0: [], # EOS
1: [0, 1, 2, 3], # translate: begin, dur, x, y
2: [0, 1, 4, 5], # curve: begin, dur, via_x, via_y
3: [0, 1, 6], # scale: begin, dur, from_factor
4: [0, 1, 7], # rotate: begin, dur, from_degree
5: [0, 1, 8], # skewX: begin, dur, from_x
6: [0, 1, 9], # skewY: begin, dur, from_y
7: [0, 1, 10, 11, 12], # fill: begin, dur, from_r, from_g, from_b
8: [0, 1, 13], # opcaity: begin, dur, from_f
9: [0, 1, 14], # blur: begin, dur, from_f
}
def unpack_embedding(embedding: torch.Tensor, dim=0, device="cpu") -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Args:
device: cpu / gpu
dim: dimension where the embedding is positioned
embedding: embedding of dimension 270
Returns: tuple of tensors: deep-svg embedding, type of prediction, animation parameters
"""
if embedding.shape[dim] != 282:
print(embedding.shape)
raise ValueError('Dimension of 270 required.')
if dim == 0:
deep_svg = embedding[: -26].to(device)
types = embedding[-26: -15].to(device)
parameters = embedding[-15:].to(device)
elif dim == 1:
deep_svg = embedding[:, : -26].to(device)
types = embedding[:, -26: -15].to(device)
parameters = embedding[:, -15:].to(device)
elif dim == 2:
deep_svg = embedding[:, :, : -26].to(device)
types = embedding[:, :, -26: -15].to(device)
parameters = embedding[:, :, -15:].to(device)
else:
raise ValueError('Dimension > 2 not possible.')
return deep_svg, types, parameters
def generate_dataset(dataframe_index: pd.DataFrame,
input_sequences_dict_used: dict,
input_sequences_dict_unused: dict,
output_sequences: pd.DataFrame,
logos_list: dict,
sequence_length_input: int,
sequence_length_output: int,
) -> dict:
"""
Builds the dataset and returns it
Args:
input_sequences_dict_used: dictionary containing input sequences per logo
input_sequences_dict_unused: dictionary containing all unused paths
dataframe_index: dataframe containing the relevant indexes for the dataframes
output_sequences: dataframe containing animations
logos_list: dictionary in train/test split containing list for logo ids
sequence_length_input: length of input sequence for padding
sequence_length_output: length of output sequence for padding
Returns: dictionary containing the dataset for training/testing
"""
dataset = {
"is_bucketing": False,
"train": {
"input": [],
"output": []
},
"test": {
"input": [],
"output": []
}
}
for i, logo_info in dataframe_index.iterrows():
logo = logo_info['filename'] # e.g. logo_1
file = logo_info['file'] # e.g. logo_1_animation_2
oversample = logo_info['repeat']
print(f"Processing {logo} with {file}: ")
if input_sequences_dict_used.keys().__contains__(logo) and input_sequences_dict_unused.keys().__contains__(logo):
for j in range(oversample):
input_tensor = _generate_input_sequence(
input_sequences_dict_used[logo].copy(),
input_sequences_dict_unused[logo].copy(),
#pd.DataFrame(),
null_features=26, # TODO depends on architecture later
sequence_length=sequence_length_input,
# is_randomized=True, always now
is_padding=True
)
output_tensor = _generate_output_sequence(
output_sequences[(output_sequences['filename'] == logo) & (output_sequences['file'] == file)].copy(),
sequence_length=sequence_length_output,
is_randomized=False,
is_padding=True
)
# append to lists
if logo in logos_list["train"]:
random_index = random.randint(0, len(dataset["train"]["input"]))
dataset["train"]["input"].insert(random_index, input_tensor)
dataset["train"]["output"].insert(random_index, output_tensor)
elif logo in logos_list["test"]:
dataset["test"]["input"].append(input_tensor)
dataset["test"]["output"].append(output_tensor)
break # no oversampling in testing
else:
print(f"Some problem with {logo}. Neither in train or test set list.")
break
dataset["train"]["input"] = torch.stack(dataset["train"]["input"])
dataset["train"]["output"] = torch.stack(dataset["train"]["output"])
dataset["test"]["input"] = torch.stack(dataset["test"]["input"])
dataset["test"]["output"] = torch.stack(dataset["test"]["output"])
return dataset
def _generate_input_sequence(logo_embeddings_used: pd.DataFrame,
logo_embeddings_unused: pd.DataFrame,
null_features: int,
sequence_length: int,
is_padding: bool) -> torch.Tensor:
"""
Build a torch tensor for the transformer input sequences.
Includes
- Ensuring all used embeddings are included
- Filling the remainder with unused embeddings up to sequence length
- Generation of padding
Args:
logo_embeddings (pd.DataFrame): DataFrame containing logo embeddings.
null_features (int): Number of null features to add to each embedding.
sequence_length (int): Target length for padding sequences.
is_padding: if true, function adds padding
Returns:
torch.Tensor: Tensor representing the input sequences.
"""
logo_embeddings_used.drop(columns=['filename', 'animation_id'], inplace=True)
logo_embeddings_unused.drop(columns=['filename', 'animation_id'], inplace=True)
# Combine used and unused. Fill used with random unused samples
logo_embeddings = logo_embeddings_unused
remaining_slots = sequence_length - len(logo_embeddings)
if remaining_slots > 0:
sample_size = min(len(logo_embeddings_unused), remaining_slots)
additional_embeddings = logo_embeddings_unused.sample(n=sample_size, replace=False)
logo_embeddings = pd.concat([logo_embeddings, additional_embeddings], ignore_index=True)
logo_embeddings.reset_index()
# Randomization
logo_embeddings = logo_embeddings.sample(frac=1).reset_index(drop=True)
# Null Features
if null_features > 0:
logo_embeddings = pd.concat([logo_embeddings,
pd.DataFrame(0,
index=logo_embeddings.index,
columns=range(logo_embeddings.shape[1],
logo_embeddings.shape[1] + null_features))],
axis=1,
ignore_index=True)
if is_padding:
logo_embeddings = _add_padding(logo_embeddings, sequence_length)
return torch.tensor(logo_embeddings.values)
def _generate_output_sequence(animation: pd.DataFrame,
sequence_length: int,
is_randomized: bool,
is_padding: bool) -> torch.Tensor:
"""
Build a torch tensor for the transformer output sequences.
Includes
- Randomization (later, when same start time)
- Generation of padding
- Add EOS Token
Args:
animation (pd.DataFrame): DataFrame containing logo embeddings.
sequence_length (int): Target length for padding sequences.
is_randomized: shuffle order of paths, applies when same start time
is_padding: if true, function adds padding
Returns:
torch.Tensor: Tensor representing the input sequences.
"""
if is_randomized:
animation = animation.sample(frac=1).reset_index(drop=True)
print("Note: Randomization not implemented yet")
animation.sort_values(by=['a10'], inplace=True) # again ordered by time start.
animation.drop(columns=['file', 'filename', "Unnamed: 0", "id"], inplace=True)
# Append the EOS row to the DataFrame
sos_eos_row = {col: 0 for col in animation.columns}
sos_eos_row["a0"] = 1
sos_eos_row = pd.DataFrame([sos_eos_row])
animation = pd.concat([sos_eos_row, animation, sos_eos_row],
ignore_index=True)
# Padding Generation: Add padding rows or cut off excess rows
if is_padding:
animation = _add_padding(animation, sequence_length)
return torch.Tensor(animation.values)
def _add_padding(dataframe: pd.DataFrame, sequence_length: int) -> pd.DataFrame:
"""
Add padding to a dataframe
Args:
dataframe: dataframe to add padding to
sequence_length: length of final sequences
Returns:
"""
if len(dataframe) < sequence_length:
padding_rows = pd.DataFrame([[PADDING_VALUE] * len(dataframe.columns)] * (sequence_length - len(dataframe)),
columns=dataframe.columns)
dataframe = pd.concat([dataframe, padding_rows], ignore_index=True)
elif len(dataframe) > sequence_length:
# Cut off excess rows
dataframe = dataframe.iloc[:sequence_length]
return dataframe
# BUCKETING
def generate_buckets_2D(dataset, column1, column2, quantiles1, quantiles2, print_histogram=True):
"""
Args:
dataset: dataset to generate buckets for
column1: first column name
column2: second column name
quantiles1: initial quantiles for column1
quantiles2: initial quantiles for column2
print_histogram: if true, a histogram of the 2D buckets is printed
Returns: dictionary object with bucket edges
"""
x_edges = dataset[column1].quantile(quantiles1)
y_edges = dataset[column2].quantile(quantiles2)
x_edges = np.array(x_edges)
y_edges = np.unique(y_edges)
if print_histogram:
hist, x_edges, y_edges = np.histogram2d(dataset[column1],
dataset[column2],
bins=[x_edges, y_edges])
print(hist)
return {
"input_edges": list(x_edges),
"output_edges": list(y_edges)
}
def get_bucket(input_length, output_length, buckets):
bucket_name = ""
for i, input_edge in enumerate(buckets["input_edges"]):
# print(f"{i}: {input_length} < {input_edge}")
if input_length > input_edge:
continue
bucket_name = bucket_name + str(int(i)) # chr(ord('A')+i)
break
bucket_name = bucket_name + "-"
for i, output_edge in enumerate(buckets["output_edges"]):
if output_length > output_edge:
continue
bucket_name = bucket_name + str(int(i))
break
return bucket_name
def warn_if_contains_NaN(dataset: torch.Tensor):
if torch.isnan(dataset).any():
print("There are NaN values in the dataset")
|