File size: 23,583 Bytes
e17e8cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
"""This code is taken from <https://github.com/alexandre01/deepsvg>
by Alexandre Carlier, Martin Danelljan, Alexandre Alahi and Radu Timofte
from the paper >https://arxiv.org/pdf/2007.11301.pdf>
"""

from __future__ import annotations
from .geom import *
import src.preprocessing.deepsvg.deepsvg_svglib.geom as geom
import re
import torch
from typing import List, Union
from xml.dom import minidom
import math
#import shapely.geometry
import numpy as np

from .geom import union_bbox
from .svg_command import SVGCommand, SVGCommandMove, SVGCommandClose, SVGCommandBezier, SVGCommandLine, SVGCommandArc


COMMANDS = "MmZzLlHhVvCcSsQqTtAa"
COMMAND_RE = re.compile(r"([MmZzLlHhVvCcSsQqTtAa])")
FLOAT_RE = re.compile(r"[-+]?[0-9]*\.?[0-9]+(?:[eE][-+]?[0-9]+)?")


empty_command = SVGCommandMove(Point(0.))


class Orientation:
    COUNTER_CLOCKWISE = 0
    CLOCKWISE = 1


class Filling:
    OUTLINE = 0
    FILL = 1
    ERASE = 2


class SVGPath:
    def __init__(self, path_commands: List[SVGCommand] = None, origin: Point = None, closed=False, filling=Filling.OUTLINE):
        self.origin = origin or Point(0.)
        self.path_commands = path_commands
        self.closed = closed

        self.filling = filling

    @property
    def start_command(self):
        return SVGCommandMove(self.origin, self.start_pos)

    @property
    def start_pos(self):
        return self.path_commands[0].start_pos

    @property
    def end_pos(self):
        return self.path_commands[-1].end_pos

    def to_group(self, *args, **kwargs):
        from .svg_primitive import SVGPathGroup
        return SVGPathGroup([self], *args, **kwargs)

    def set_filling(self, filling=True):
        self.filling = Filling.FILL if filling else Filling.ERASE
        return self

    def __len__(self):
        return 1 + len(self.path_commands)

    def __getitem__(self, idx):
        if idx == 0:
            return self.start_command
        return self.path_commands[idx-1]

    def all_commands(self, with_close=True):
        close_cmd = [SVGCommandClose(self.path_commands[-1].end_pos.copy(), self.start_pos.copy())] if self.closed and self.path_commands and with_close \
                    else ()
        return [self.start_command, *self.path_commands, *close_cmd]

    def copy(self):
        return SVGPath([path_command.copy() for path_command in self.path_commands], self.origin.copy(), self.closed, filling=self.filling)

    @staticmethod
    def _tokenize_path(path_str):
        cmd = None
        for x in COMMAND_RE.split(path_str):
            if x and x in COMMANDS:
                cmd = x
            elif cmd is not None:
                yield cmd, list(map(float, FLOAT_RE.findall(x)))

    @staticmethod
    def from_xml(x: minidom.Element):
        stroke = x.getAttribute('stroke')
        dasharray = x.getAttribute('dasharray')
        stroke_width = x.getAttribute('stroke-width')

        fill = not x.hasAttribute("fill") or not x.getAttribute("fill") == "none"

        filling = Filling.OUTLINE if not x.hasAttribute("filling") else int(x.getAttribute("filling"))

        s = x.getAttribute('d')
        return SVGPath.from_str(s, fill=fill, filling=filling)

    @staticmethod
    def from_str(s: str, fill=False, filling=Filling.OUTLINE, add_closing=False):
        path_commands = []
        pos = initial_pos = Point(0.)
        prev_command = None
        for cmd, args in SVGPath._tokenize_path(s):
            cmd_parsed, pos, initial_pos = SVGCommand.from_str(cmd, args, pos, initial_pos, prev_command)
            prev_command = cmd_parsed[-1]
            path_commands.extend(cmd_parsed)

        return SVGPath.from_commands(path_commands, fill=fill, filling=filling, add_closing=add_closing)

    @staticmethod
    def from_tensor(tensor: torch.Tensor, allow_empty=False):
        return SVGPath.from_commands([SVGCommand.from_tensor(row) for row in tensor], allow_empty=allow_empty)

    @staticmethod
    def from_commands(path_commands: List[SVGCommand], fill=False, filling=Filling.OUTLINE, add_closing=False, allow_empty=False):
        from .svg_primitive import SVGPathGroup

        if not path_commands:
            return SVGPathGroup([])

        svg_paths = []
        svg_path = None

        for command in path_commands:
            if isinstance(command, SVGCommandMove):
                if svg_path is not None and (allow_empty or svg_path.path_commands):  # SVGPath contains at least one command
                    if add_closing:
                        svg_path.closed = True
                    if not svg_path.path_commands:
                        svg_path.path_commands.append(empty_command)
                    svg_paths.append(svg_path)

                svg_path = SVGPath([], command.start_pos.copy(), filling=filling)
            else:
                if svg_path is None:
                    # Ignore commands until the first moveTo commands
                    continue

                if isinstance(command, SVGCommandClose):
                    if allow_empty or svg_path.path_commands:  # SVGPath contains at least one command
                        svg_path.closed = True
                        if not svg_path.path_commands:
                            svg_path.path_commands.append(empty_command)
                        svg_paths.append(svg_path)
                    svg_path = None
                else:
                    svg_path.path_commands.append(command)
        if svg_path is not None and (allow_empty or svg_path.path_commands):  # SVGPath contains at least one command
            if add_closing:
                svg_path.closed = True
            if not svg_path.path_commands:
                svg_path.path_commands.append(empty_command)
            svg_paths.append(svg_path)
        return SVGPathGroup(svg_paths, fill=fill)

    def __repr__(self):
        return "SVGPath({})".format(" ".join(command.__repr__() for command in self.all_commands()))

    def to_str(self, fill=False):
        return " ".join(command.to_str() for command in self.all_commands())

    def to_tensor(self, PAD_VAL=-1):
        return torch.stack([command.to_tensor(PAD_VAL=PAD_VAL) for command in self.all_commands()])

    def _get_viz_elements(self, with_points=False, with_handles=False, with_bboxes=False, color_firstlast=False, with_moves=True):
        points = self._get_points_viz(color_firstlast, with_moves) if with_points else ()
        handles = self._get_handles_viz() if with_handles else ()
        return [*points, *handles]

    def draw(self, viewbox=Bbox(24), *args, **kwargs):
        from .svg import SVG
        return SVG([self.to_group()], viewbox=viewbox).draw(*args, **kwargs)

    def _get_points_viz(self, color_firstlast=True, with_moves=True):
        points = []
        commands = self.all_commands(with_close=False)
        n = len(commands)
        for i, command in enumerate(commands):
            if not isinstance(command, SVGCommandMove) or with_moves:
                points_viz = command.get_points_viz(first=(color_firstlast and i <= 1), last=(color_firstlast and i >= n-2))
                points.extend(points_viz)
        return points

    def _get_handles_viz(self):
        handles = []
        for command in self.path_commands:
            handles.extend(command.get_handles_viz())
        return handles

    def _get_unique_geoms(self):
        geoms = []
        for command in self.all_commands():
            geoms.extend(command.get_geoms())
        return list(set(geoms))

    def translate(self, vec):
        for geom in self._get_unique_geoms():
            geom.translate(vec)
        return self

    def rotate(self, angle):
        for geom in self._get_unique_geoms():
            geom.rotate_(angle)
        return self

    def scale(self, factor):
        for geom in self._get_unique_geoms():
            geom.scale(factor)
        return self

    def filter_consecutives(self):
        path_commands = []
        for command in self.path_commands:
            if not command.start_pos.isclose(command.end_pos):
                path_commands.append(command)
        self.path_commands = path_commands
        return self

    def filter_duplicates(self, min_dist=0.2):
        path_commands = []
        current_command = None
        for command in self.path_commands:
            if current_command is None:
                path_commands.append(command)
                current_command = command

            if command.end_pos.dist(current_command.end_pos) >= min_dist:
                command.start_pos = current_command.end_pos
                path_commands.append(command)
                current_command = command

        self.path_commands = path_commands
        return self

    def duplicate_extremities(self):
        self.path_commands = [SVGCommandLine(self.start_pos, self.start_pos),
                              *self.path_commands,
                              SVGCommandLine(self.end_pos, self.end_pos)]
        return self

    def is_clockwise(self):
        if len(self.path_commands) == 1:
            cmd = self.path_commands[0]
            return cmd.start_pos.tolist() <= cmd.end_pos.tolist()

        det_total = 0.
        for cmd in self.path_commands:
            det_total += geom.det(cmd.start_pos, cmd.end_pos)
        return det_total >= 0.

    def set_orientation(self, orientation):
        """
        orientation: 1 (clockwise), 0 (counter-clockwise)
        """
        if orientation == self.is_clockwise():
            return self
        return self.reverse()

    def set_closed(self, closed=True):
        self.closed = closed
        return self

    def reverse(self):
        path_commands = []

        for command in reversed(self.path_commands):
            path_commands.append(command.reverse())

        self.path_commands = path_commands
        return self

    def reverse_non_closed(self):
        if not self.start_pos.isclose(self.end_pos):
            return self.reverse()
        return self

    def simplify_arcs(self):
        path_commands = []
        for command in self.path_commands:
            if isinstance(command, SVGCommandArc):
                if command.radius.iszero():
                    continue
                if command.start_pos.isclose(command.end_pos):
                    continue
                path_commands.extend(command.to_beziers())
            else:
                path_commands.append(command)

        self.path_commands = path_commands
        return self

    def _get_topleftmost_command(self):
        topleftmost_cmd = None
        topleftmost_idx = 0

        for i, cmd in enumerate(self.path_commands):
            if topleftmost_cmd is None or cmd.is_left_to(topleftmost_cmd):
                topleftmost_cmd = cmd
                topleftmost_idx = i

        return topleftmost_cmd, topleftmost_idx

    def reorder(self):
        if self.closed:
            topleftmost_cmd, topleftmost_idx = self._get_topleftmost_command()

            self.path_commands = [
                *self.path_commands[topleftmost_idx:],
                *self.path_commands[:topleftmost_idx]
            ]

        return self

    def to_video(self, wrapper, clips=None, svg_commands=None, color="grey"):
        from .svg import SVG
        from .svg_primitive import SVGLine, SVGCircle

        if clips is None:
            clips = []
        if svg_commands is None:
            svg_commands = []
        svg_dots, svg_moves = [], []

        for command in self.all_commands():
            start_pos, end_pos = command.start_pos, command.end_pos

            if isinstance(command, SVGCommandMove):
                move = SVGLine(start_pos, end_pos, color="teal", dasharray=0.5)
                svg_moves.append(move)

            dot = SVGCircle(end_pos, radius=Radius(0.1), color="red")
            svg_dots.append(dot)

            svg_path = SVGPath(svg_commands).to_group(color=color)
            svg_new_path = SVGPath([SVGCommandMove(start_pos), command]).to_group(color="red")

            svg_paths = [svg_path, svg_new_path]  if svg_commands else [svg_new_path]
            im = SVG([*svg_paths, *svg_moves, *svg_dots]).draw(do_display=False, return_png=True, with_points=False)
            clips.append(wrapper(np.array(im)))

            svg_dots[-1].color = "grey"
            svg_commands.append(command)
            svg_moves = []

        return clips, svg_commands

    def numericalize(self, n=256):
        for command in self.all_commands():
            command.numericalize(n)

    def smooth(self):
        # https://github.com/paperjs/paper.js/blob/c7d85b663edb728ec78fffa9f828435eaf78d9c9/src/path/Path.js#L1288
        n = len(self.path_commands)
        knots = [self.start_pos, *(path_commmand.end_pos for path_commmand in self.path_commands)]
        r = [knots[0] + 2 * knots[1]]
        f = [2]
        p = [Point(0.)] * (n + 1)

        # Solve with the Thomas algorithm
        for i in range(1, n):
            internal = i < n - 1
            a = 1
            b = 4 if internal else 2
            u = 4 if internal else 3
            v = 2 if internal else 0
            m = a / f[i-1]

            f.append(b-m)
            r.append(u * knots[i] + v * knots[i + 1] - m * r[i-1])

        p[n-1] = r[n-1] / f[n-1]
        for i in range(n-2, -1, -1):
            p[i] = (r[i] - p[i+1]) / f[i]
        p[n] = (3 * knots[n] - p[n-1]) / 2

        for i in range(n):
            p1, p2 = knots[i], knots[i+1]
            c1, c2 = p[i], 2 * p2 - p[i+1]
            self.path_commands[i] = SVGCommandBezier(p1, c1, c2, p2)

        return self

    def simplify_heuristic(self):
        return self.copy().split(max_dist=2, include_lines=False) \
            .simplify(tolerance=0.1, epsilon=0.2, angle_threshold=150) \
            .split(max_dist=7.5)

    def simplify(self, tolerance=0.1, epsilon=0.1, angle_threshold=179., force_smooth=False):
        # https://github.com/paperjs/paper.js/blob/c044b698c6b224c10a7747664b2a4cd00a416a25/src/path/PathFitter.js#L44
        points = [self.start_pos, *(path_command.end_pos for path_command in self.path_commands)]

        def subdivide_indices():
            segments_list = []
            current_segment = []
            prev_command = None

            for i, command in enumerate(self.path_commands):
                if isinstance(command, SVGCommandLine):
                    if current_segment:
                        segments_list.append(current_segment)
                        current_segment = []
                    prev_command = None

                    continue

                if prev_command is not None and prev_command.angle(command) < angle_threshold:
                    if current_segment:
                        segments_list.append(current_segment)
                        current_segment = []

                current_segment.append(i)
                prev_command = command

            if current_segment:
                segments_list.append(current_segment)

            return segments_list

        path_commands = []

        def computeMaxError(first, last, curve: SVGCommandBezier, u):
            maxDist = 0.
            index = (last - first + 1) // 2
            for i in range(1, last - first):
                dist = curve.eval(u[i]).dist(points[first + i]) ** 2
                if dist >= maxDist:
                    maxDist = dist
                    index = first + i
            return maxDist, index

        def chordLengthParametrize(first, last):
            u = [0.]
            for i in range(1, last - first + 1):
                u.append(u[i-1] + points[first + i].dist(points[first + i-1]))

            for i, _ in enumerate(u[1:], 1):
                u[i] /= u[-1]

            return u

        def isMachineZero(val):
            MACHINE_EPSILON = 1.12e-16
            return val >= -MACHINE_EPSILON and val <= MACHINE_EPSILON

        def findRoot(curve: SVGCommandBezier, point, u):
            """
               Newton's root finding algorithm calculates f(x)=0 by reiterating
               x_n+1 = x_n - f(x_n)/f'(x_n)
               We are trying to find curve parameter u for some point p that minimizes
               the distance from that point to the curve. Distance point to curve is d=q(u)-p.
               At minimum distance the point is perpendicular to the curve.
               We are solving
               f = q(u)-p * q'(u) = 0
               with
               f' = q'(u) * q'(u) + q(u)-p * q''(u)
               gives
               u_n+1 = u_n - |q(u_n)-p * q'(u_n)| / |q'(u_n)**2 + q(u_n)-p * q''(u_n)|
            """
            diff = curve.eval(u) - point
            d1, d2 = curve.derivative(u, n=1), curve.derivative(u, n=2)
            numerator = diff.dot(d1)
            denominator = d1.dot(d1) + diff.dot(d2)

            return u if isMachineZero(denominator) else u - numerator / denominator

        def reparametrize(first, last, u, curve: SVGCommandBezier):
            for i in range(0, last - first + 1):
                u[i] = findRoot(curve, points[first + i], u[i])

            for i in range(1, len(u)):
                if u[i] <= u[i-1]:
                    return False

            return True

        def generateBezier(first, last, uPrime, tan1, tan2):
            epsilon = 1e-12
            p1, p2 = points[first], points[last]
            C = np.zeros((2, 2))
            X = np.zeros(2)

            for i in range(last - first + 1):
                u = uPrime[i]
                t = 1 - u
                b = 3 * u * t
                b0 = t**3
                b1 = b * t
                b2 = b * u
                b3 = u**3
                a1 = tan1 * b1
                a2 = tan2 * b2
                tmp = points[first + i] - p1 * (b0 + b1) - p2 * (b2 + b3)

                C[0, 0] += a1.dot(a1)
                C[0, 1] += a1.dot(a2)
                C[1, 0] = C[0, 1]
                C[1, 1] += a2.dot(a2)
                X[0] += a1.dot(tmp)
                X[1] += a2.dot(tmp)

            detC0C1 = C[0, 0] * C[1, 1] - C[1, 0] * C[0, 1]
            if abs(detC0C1) > epsilon:
                detC0X = C[0, 0] * X[1] - C[1, 0] * X[0]
                detXC1 = X[0] * C[1, 1] - X[1] * C[0, 1]
                alpha1 = detXC1 / detC0C1
                alpha2 = detC0X / detC0C1
            else:
                c0 = C[0, 0] + C[0, 1]
                c1 = C[1, 0] + C[1, 1]
                alpha1 = alpha2 = X[0] / c0 if abs(c0) > epsilon else (X[1] / c1 if abs(c1) > epsilon else 0)

            segLength = p2.dist(p1)
            eps = epsilon * segLength
            handle1 = handle2 = None

            if alpha1 < eps or alpha2 < eps:
                alpha1 = alpha2 = segLength / 3
            else:
                line = p2 - p1
                handle1 = tan1 * alpha1
                handle2 = tan2 * alpha2

                if handle1.dot(line) - handle2.dot(line) > segLength**2:
                    alpha1 = alpha2 = segLength / 3
                    handle1 = handle2 = None

            if handle1 is None or handle2 is None:
                handle1 = tan1 * alpha1
                handle2 = tan2 * alpha2

            return SVGCommandBezier(p1, p1 + handle1, p2 + handle2, p2)

        def computeLinearMaxError(first, last):
            maxDist = 0.
            index = (last - first + 1) // 2

            p1, p2 = points[first], points[last]
            for i in range(first + 1, last):
                dist = points[i].distToLine(p1, p2)
                if dist >= maxDist:
                    maxDist = dist
                    index = i
            return maxDist, index

        def ramerDouglasPeucker(first, last, epsilon):
            max_error, split_index = computeLinearMaxError(first, last)

            if max_error > epsilon:
                ramerDouglasPeucker(first, split_index, epsilon)
                ramerDouglasPeucker(split_index, last, epsilon)
            else:
                p1, p2 = points[first], points[last]
                path_commands.append(SVGCommandLine(p1, p2))

        def fitCubic(error, first, last, tan1=None, tan2=None):
            # For convenience, compute extremity tangents if not provided
            if tan1 is None and tan2 is None:
                tan1 = (points[first + 1] - points[first]).normalize()
                tan2 = (points[last - 1] - points[last]).normalize()

            if last - first == 1:
                p1, p2 = points[first], points[last]
                dist = p1.dist(p2) / 3
                path_commands.append(SVGCommandBezier(p1, p1 + dist * tan1, p2 + dist * tan2, p2))
                return

            uPrime = chordLengthParametrize(first, last)
            maxError = max(error, error**2)
            parametersInOrder = True

            for i in range(5):
                curve = generateBezier(first, last, uPrime, tan1, tan2)

                max_error, split_index = computeMaxError(first, last, curve, uPrime)

                if max_error < error and parametersInOrder:
                    path_commands.append(curve)
                    return

                if max_error >= maxError:
                    break

                parametersInOrder = reparametrize(first, last, uPrime, curve)
                maxError = max_error

            tanCenter = (points[split_index-1] - points[split_index+1]).normalize()
            fitCubic(error, first, split_index, tan1, tanCenter)
            fitCubic(error, split_index, last, -tanCenter, tan2)

        segments_list = subdivide_indices()
        if force_smooth:
            fitCubic(tolerance, 0, len(points) - 1)
        else:
            if segments_list:
                seg = segments_list[0]
                ramerDouglasPeucker(0, seg[0], epsilon)

                for seg, seg_next in zip(segments_list[:-1], segments_list[1:]):
                    fitCubic(tolerance, seg[0], seg[-1] + 1)
                    ramerDouglasPeucker(seg[-1] + 1, seg_next[0], epsilon)

                seg = segments_list[-1]
                fitCubic(tolerance, seg[0], seg[-1] + 1)
                ramerDouglasPeucker(seg[-1] + 1, len(points) - 1, epsilon)
            else:
                ramerDouglasPeucker(0, len(points) - 1, epsilon)

        self.path_commands = path_commands

        return self

    def split(self, n=None, max_dist=None, include_lines=True):
        path_commands = []

        for command in self.path_commands:
            if isinstance(command, SVGCommandLine) and not include_lines:
                path_commands.append(command)
            else:
                l = command.length()
                if max_dist is not None:
                    n = max(math.ceil(l / max_dist), 1)

                path_commands.extend(command.split(n=n))

        self.path_commands = path_commands

        return self

    def bbox(self):
        return union_bbox([cmd.bbox() for cmd in self.path_commands])

    def sample_points(self, max_dist=0.4):
        points = []

        for command in self.path_commands:
            l = command.length()
            n = max(math.ceil(l / max_dist), 1)
            points.extend(command.sample_points(n=n, return_array=True)[None])
        points = np.concatenate(points, axis=0)
        return points

    def to_shapely(self):
        polygon = shapely.geometry.Polygon(self.sample_points())

        if not polygon.is_valid:
            polygon = polygon.buffer(0)

        return polygon

    def to_points(self):
        return np.array([self.start_pos.pos, *(cmd.end_pos.pos for cmd in self.path_commands)])