Spaces:
Running
Running
File size: 21,232 Bytes
e17e8cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
"""This code is taken from <https://github.com/alexandre01/deepsvg>
by Alexandre Carlier, Martin Danelljan, Alexandre Alahi and Radu Timofte
from the paper >https://arxiv.org/pdf/2007.11301.pdf>
"""
from src.preprocessing.deepsvg.deepsvg_difflib.tensor import SVGTensor
from src.preprocessing.deepsvg.deepsvg_utils.utils import _pack_group_batch, _unpack_group_batch, _make_seq_first, _make_batch_first
from .layers.transformer import *
from .layers.improved_transformer import *
from .layers.positional_encoding import *
from .basic_blocks import FCN, HierarchFCN, ResNet
from .model_config import _DefaultConfig
from .model_utils import (_get_padding_mask, _get_key_padding_mask, _get_group_mask, _get_visibility_mask,
_get_key_visibility_mask, _generate_square_subsequent_mask, _sample_categorical, _threshold_sample)
from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence
from scipy.optimize import linear_sum_assignment
class SVGEmbedding(nn.Module):
def __init__(self, cfg: _DefaultConfig, seq_len, rel_args=False, use_group=True, group_len=None):
super().__init__()
self.cfg = cfg
self.command_embed = nn.Embedding(cfg.n_commands, cfg.d_model)
args_dim = 2 * cfg.args_dim if rel_args else cfg.args_dim + 1
self.arg_embed = nn.Embedding(args_dim, 64)
self.embed_fcn = nn.Linear(64 * cfg.n_args, cfg.d_model)
self.use_group = use_group
if use_group:
if group_len is None:
group_len = cfg.max_num_groups
self.group_embed = nn.Embedding(group_len+2, cfg.d_model)
self.pos_encoding = PositionalEncodingLUT(cfg.d_model, max_len=seq_len+2)
self._init_embeddings()
def _init_embeddings(self):
nn.init.kaiming_normal_(self.command_embed.weight, mode="fan_in")
nn.init.kaiming_normal_(self.arg_embed.weight, mode="fan_in")
nn.init.kaiming_normal_(self.embed_fcn.weight, mode="fan_in")
if self.use_group:
nn.init.kaiming_normal_(self.group_embed.weight, mode="fan_in")
def forward(self, commands, args, groups=None):
S, GN = commands.shape
src = self.command_embed(commands.long()) + \
self.embed_fcn(self.arg_embed((args + 1).long()).view(S, GN, -1)) # shift due to -1 PAD_VAL
if self.use_group:
src = src + self.group_embed(groups.long())
src = self.pos_encoding(src)
return src
class ConstEmbedding(nn.Module):
def __init__(self, cfg: _DefaultConfig, seq_len):
super().__init__()
self.cfg = cfg
self.seq_len = seq_len
self.PE = PositionalEncodingLUT(cfg.d_model, max_len=seq_len)
def forward(self, z):
N = z.size(1)
src = self.PE(z.new_zeros(self.seq_len, N, self.cfg.d_model))
return src
class LabelEmbedding(nn.Module):
def __init__(self, cfg: _DefaultConfig):
super().__init__()
self.label_embedding = nn.Embedding(cfg.n_labels, cfg.dim_label)
self._init_embeddings()
def _init_embeddings(self):
nn.init.kaiming_normal_(self.label_embedding.weight, mode="fan_in")
def forward(self, label):
src = self.label_embedding(label)
return src
class Encoder(nn.Module):
def __init__(self, cfg: _DefaultConfig):
super().__init__()
self.cfg = cfg
seq_len = cfg.max_seq_len if cfg.encode_stages == 2 else cfg.max_total_len
self.use_group = cfg.encode_stages == 1
self.embedding = SVGEmbedding(cfg, seq_len, use_group=self.use_group)
if cfg.label_condition:
self.label_embedding = LabelEmbedding(cfg)
dim_label = cfg.dim_label if cfg.label_condition else None
if cfg.model_type == "transformer":
encoder_layer = TransformerEncoderLayerImproved(cfg.d_model, cfg.n_heads, cfg.dim_feedforward, cfg.dropout, d_global2=dim_label)
encoder_norm = LayerNorm(cfg.d_model)
self.encoder = TransformerEncoder(encoder_layer, cfg.n_layers, encoder_norm)
else: # "lstm"
self.encoder = nn.LSTM(cfg.d_model, cfg.d_model // 2, dropout=cfg.dropout, bidirectional=True)
if cfg.encode_stages == 2:
if not cfg.self_match:
self.hierarchical_PE = PositionalEncodingLUT(cfg.d_model, max_len=cfg.max_num_groups)
hierarchical_encoder_layer = TransformerEncoderLayerImproved(cfg.d_model, cfg.n_heads, cfg.dim_feedforward, cfg.dropout, d_global2=dim_label)
hierarchical_encoder_norm = LayerNorm(cfg.d_model)
self.hierarchical_encoder = TransformerEncoder(hierarchical_encoder_layer, cfg.n_layers, hierarchical_encoder_norm)
def forward(self, commands, args, label=None):
S, G, N = commands.shape
l = self.label_embedding(label).unsqueeze(0).unsqueeze(0).repeat(1, commands.size(1), 1, 1) if self.cfg.label_condition else None
if self.cfg.encode_stages == 2:
visibility_mask, key_visibility_mask = _get_visibility_mask(commands, seq_dim=0), _get_key_visibility_mask(commands, seq_dim=0)
commands, args, l = _pack_group_batch(commands, args, l)
padding_mask, key_padding_mask = _get_padding_mask(commands, seq_dim=0), _get_key_padding_mask(commands, seq_dim=0)
group_mask = _get_group_mask(commands, seq_dim=0) if self.use_group else None
src = self.embedding(commands, args, group_mask)
if self.cfg.model_type == "transformer":
memory = self.encoder(src, mask=None, src_key_padding_mask=key_padding_mask, memory2=l)
z = (memory * padding_mask).sum(dim=0, keepdim=True) / padding_mask.sum(dim=0, keepdim=True)
else: # "lstm"
hidden_cell = (src.new_zeros(2, N, self.cfg.d_model // 2),
src.new_zeros(2, N, self.cfg.d_model // 2))
sequence_lengths = padding_mask.sum(dim=0).squeeze(-1)
x = pack_padded_sequence(src, sequence_lengths, enforce_sorted=False)
packed_output, _ = self.encoder(x, hidden_cell)
memory, _ = pad_packed_sequence(packed_output)
idx = (sequence_lengths - 1).long().view(1, -1, 1).repeat(1, 1, self.cfg.d_model)
z = memory.gather(dim=0, index=idx)
z = _unpack_group_batch(N, z)
if self.cfg.encode_stages == 2:
src = z.transpose(0, 1)
src = _pack_group_batch(src)
l = self.label_embedding(label).unsqueeze(0) if self.cfg.label_condition else None
if not self.cfg.self_match:
src = self.hierarchical_PE(src)
memory = self.hierarchical_encoder(src, mask=None, src_key_padding_mask=key_visibility_mask, memory2=l)
z = (memory * visibility_mask).sum(dim=0, keepdim=True) / visibility_mask.sum(dim=0, keepdim=True)
z = _unpack_group_batch(N, z)
return z
class VAE(nn.Module):
def __init__(self, cfg: _DefaultConfig):
super(VAE, self).__init__()
self.enc_mu_fcn = nn.Linear(cfg.d_model, cfg.dim_z)
self.enc_sigma_fcn = nn.Linear(cfg.d_model, cfg.dim_z)
self._init_embeddings()
def _init_embeddings(self):
nn.init.normal_(self.enc_mu_fcn.weight, std=0.001)
nn.init.constant_(self.enc_mu_fcn.bias, 0)
nn.init.normal_(self.enc_sigma_fcn.weight, std=0.001)
nn.init.constant_(self.enc_sigma_fcn.bias, 0)
def forward(self, z):
mu, logsigma = self.enc_mu_fcn(z), self.enc_sigma_fcn(z)
sigma = torch.exp(logsigma / 2.)
z = mu + sigma * torch.randn_like(sigma)
return z, mu, logsigma
class Bottleneck(nn.Module):
def __init__(self, cfg: _DefaultConfig):
super(Bottleneck, self).__init__()
self.bottleneck = nn.Linear(cfg.d_model, cfg.dim_z)
def forward(self, z):
return self.bottleneck(z)
class Decoder(nn.Module):
def __init__(self, cfg: _DefaultConfig):
super(Decoder, self).__init__()
self.cfg = cfg
if cfg.label_condition:
self.label_embedding = LabelEmbedding(cfg)
dim_label = cfg.dim_label if cfg.label_condition else None
if cfg.decode_stages == 2:
self.hierarchical_embedding = ConstEmbedding(cfg, cfg.num_groups_proposal)
hierarchical_decoder_layer = TransformerDecoderLayerGlobalImproved(cfg.d_model, cfg.dim_z, cfg.n_heads, cfg.dim_feedforward, cfg.dropout, d_global2=dim_label)
hierarchical_decoder_norm = LayerNorm(cfg.d_model)
self.hierarchical_decoder = TransformerDecoder(hierarchical_decoder_layer, cfg.n_layers_decode, hierarchical_decoder_norm)
self.hierarchical_fcn = HierarchFCN(cfg.d_model, cfg.dim_z)
if cfg.pred_mode == "autoregressive":
self.embedding = SVGEmbedding(cfg, cfg.max_total_len, rel_args=cfg.rel_targets, use_group=True, group_len=cfg.max_total_len)
square_subsequent_mask = _generate_square_subsequent_mask(self.cfg.max_total_len+1)
self.register_buffer("square_subsequent_mask", square_subsequent_mask)
else: # "one_shot"
seq_len = cfg.max_seq_len+1 if cfg.decode_stages == 2 else cfg.max_total_len+1
self.embedding = ConstEmbedding(cfg, seq_len)
if cfg.model_type == "transformer":
decoder_layer = TransformerDecoderLayerGlobalImproved(cfg.d_model, cfg.dim_z, cfg.n_heads, cfg.dim_feedforward, cfg.dropout, d_global2=dim_label)
decoder_norm = LayerNorm(cfg.d_model)
self.decoder = TransformerDecoder(decoder_layer, cfg.n_layers_decode, decoder_norm)
else: # "lstm"
self.fc_hc = nn.Linear(cfg.dim_z, 2 * cfg.d_model)
self.decoder = nn.LSTM(cfg.d_model, cfg.d_model, dropout=cfg.dropout)
args_dim = 2 * cfg.args_dim if cfg.rel_targets else cfg.args_dim + 1
self.fcn = FCN(cfg.d_model, cfg.n_commands, cfg.n_args, args_dim)
def _get_initial_state(self, z):
hidden, cell = torch.split(torch.tanh(self.fc_hc(z)), self.cfg.d_model, dim=2)
hidden_cell = hidden.contiguous(), cell.contiguous()
return hidden_cell
def forward(self, z, commands, args, label=None, hierarch_logits=None, return_hierarch=False):
N = z.size(2)
l = self.label_embedding(label).unsqueeze(0) if self.cfg.label_condition else None
if hierarch_logits is None:
z = _pack_group_batch(z)
if self.cfg.decode_stages == 2:
if hierarch_logits is None:
src = self.hierarchical_embedding(z)
out = self.hierarchical_decoder(src, z, tgt_mask=None, tgt_key_padding_mask=None, memory2=l)
hierarch_logits, z = self.hierarchical_fcn(out)
if self.cfg.label_condition: l = l.unsqueeze(0).repeat(1, z.size(1), 1, 1)
hierarch_logits, z, l = _pack_group_batch(hierarch_logits, z, l)
if return_hierarch:
return _unpack_group_batch(N, hierarch_logits, z)
if self.cfg.pred_mode == "autoregressive":
S = commands.size(0)
commands, args = _pack_group_batch(commands, args)
group_mask = _get_group_mask(commands, seq_dim=0)
src = self.embedding(commands, args, group_mask)
if self.cfg.model_type == "transformer":
key_padding_mask = _get_key_padding_mask(commands, seq_dim=0)
out = self.decoder(src, z, tgt_mask=self.square_subsequent_mask[:S, :S], tgt_key_padding_mask=key_padding_mask, memory2=l)
else: # "lstm"
hidden_cell = self._get_initial_state(z)
out, _ = self.decoder(src, hidden_cell)
else: # "one_shot"
src = self.embedding(z)
out = self.decoder(src, z, tgt_mask=None, tgt_key_padding_mask=None, memory2=l)
command_logits, args_logits = self.fcn(out)
out_logits = (command_logits, args_logits) + ((hierarch_logits,) if self.cfg.decode_stages == 2 else ())
return _unpack_group_batch(N, *out_logits)
class SVGTransformer(nn.Module):
def __init__(self, cfg: _DefaultConfig):
super(SVGTransformer, self).__init__()
self.cfg = cfg
self.args_dim = 2 * cfg.args_dim if cfg.rel_targets else cfg.args_dim + 1
if self.cfg.encode_stages > 0:
self.encoder = Encoder(cfg)
if cfg.use_resnet:
self.resnet = ResNet(cfg.d_model)
if cfg.use_vae:
self.vae = VAE(cfg)
else:
self.bottleneck = Bottleneck(cfg)
self.decoder = Decoder(cfg)
self.register_buffer("cmd_args_mask", SVGTensor.CMD_ARGS_MASK)
def perfect_matching(self, command_logits, args_logits, hierarch_logits, tgt_commands, tgt_args):
with torch.no_grad():
N, G, S, n_args = tgt_args.shape
visibility_mask = _get_visibility_mask(tgt_commands, seq_dim=-1)
padding_mask = _get_padding_mask(tgt_commands, seq_dim=-1, extended=True) * visibility_mask.unsqueeze(-1)
# Unsqueeze
tgt_commands, tgt_args, tgt_hierarch = tgt_commands.unsqueeze(2), tgt_args.unsqueeze(2), visibility_mask.unsqueeze(2)
command_logits, args_logits, hierarch_logits = command_logits.unsqueeze(1), args_logits.unsqueeze(1), hierarch_logits.unsqueeze(1).squeeze(-2)
# Loss
tgt_hierarch, hierarch_logits = tgt_hierarch.repeat(1, 1, self.cfg.num_groups_proposal), hierarch_logits.repeat(1, G, 1, 1)
tgt_commands, command_logits = tgt_commands.repeat(1, 1, self.cfg.num_groups_proposal, 1), command_logits.repeat(1, G, 1, 1, 1)
tgt_args, args_logits = tgt_args.repeat(1, 1, self.cfg.num_groups_proposal, 1, 1), args_logits.repeat(1, G, 1, 1, 1, 1)
padding_mask, mask = padding_mask.unsqueeze(2).repeat(1, 1, self.cfg.num_groups_proposal, 1), self.cmd_args_mask[tgt_commands.long()]
loss_args = F.cross_entropy(args_logits.reshape(-1, self.args_dim), tgt_args.reshape(-1).long() + 1, reduction="none").reshape(N, G, self.cfg.num_groups_proposal, S, n_args) # shift due to -1 PAD_VAL
loss_cmd = F.cross_entropy(command_logits.reshape(-1, self.cfg.n_commands), tgt_commands.reshape(-1).long(), reduction="none").reshape(N, G, self.cfg.num_groups_proposal, S)
loss_hierarch = F.cross_entropy(hierarch_logits.reshape(-1, 2), tgt_hierarch.reshape(-1).long(), reduction="none").reshape(N, G, self.cfg.num_groups_proposal)
loss_args = (loss_args * mask).sum(dim=[-1, -2]) / mask.sum(dim=[-1, -2])
loss_cmd = (loss_cmd * padding_mask).sum(dim=-1) / padding_mask.sum(dim=-1)
loss = 2.0 * loss_args + 1.0 * loss_cmd + 1.0 * loss_hierarch
# Iterate over the batch-dimension
assignment_list = []
full_set = set(range(self.cfg.num_groups_proposal))
for i in range(N):
costs = loss[i]
mask = visibility_mask[i]
_, assign = linear_sum_assignment(costs[mask].cpu())
assign = assign.tolist()
assignment_list.append(assign + list(full_set - set(assign)))
assignment = torch.tensor(assignment_list, device=command_logits.device)
return assignment.unsqueeze(-1).unsqueeze(-1)
def forward(self, commands_enc, args_enc, commands_dec, args_dec, label=None,
z=None, hierarch_logits=None,
return_tgt=True, params=None, encode_mode=False, return_hierarch=False):
commands_enc, args_enc = _make_seq_first(commands_enc, args_enc) # Possibly None, None
commands_dec_, args_dec_ = _make_seq_first(commands_dec, args_dec)
if z is None:
z = self.encoder(commands_enc, args_enc, label)
if self.cfg.use_resnet:
z = self.resnet(z)
if self.cfg.use_vae:
z, mu, logsigma = self.vae(z)
else:
z = self.bottleneck(z)
else:
z = _make_seq_first(z)
if encode_mode: return z
if return_tgt: # Train mode
commands_dec_, args_dec_ = commands_dec_[:-1], args_dec_[:-1]
out_logits = self.decoder(z, commands_dec_, args_dec_, label, hierarch_logits=hierarch_logits,
return_hierarch=return_hierarch)
if return_hierarch:
return out_logits
out_logits = _make_batch_first(*out_logits)
if return_tgt and self.cfg.self_match: # Assignment
assert self.cfg.decode_stages == 2 # Self-matching expects two-stage decoder
command_logits, args_logits, hierarch_logits = out_logits
assignment = self.perfect_matching(command_logits, args_logits, hierarch_logits, commands_dec[..., 1:], args_dec[..., 1:, :])
command_logits = torch.gather(command_logits, dim=1, index=assignment.expand_as(command_logits))
args_logits = torch.gather(args_logits, dim=1, index=assignment.unsqueeze(-1).expand_as(args_logits))
hierarch_logits = torch.gather(hierarch_logits, dim=1, index=assignment.expand_as(hierarch_logits))
out_logits = (command_logits, args_logits, hierarch_logits)
res = {
"command_logits": out_logits[0],
"args_logits": out_logits[1]
}
if self.cfg.decode_stages == 2:
res["visibility_logits"] = out_logits[2]
if return_tgt:
res["tgt_commands"] = commands_dec
res["tgt_args"] = args_dec
if self.cfg.use_vae:
res["mu"] = _make_batch_first(mu)
res["logsigma"] = _make_batch_first(logsigma)
return res
def greedy_sample(self, commands_enc=None, args_enc=None, commands_dec=None, args_dec=None, label=None,
z=None, hierarch_logits=None,
concat_groups=True, temperature=0.0001):
if self.cfg.pred_mode == "one_shot":
res = self.forward(commands_enc, args_enc, commands_dec, args_dec, label=label, z=z, hierarch_logits=hierarch_logits, return_tgt=False)
commands_y, args_y = _sample_categorical(temperature, res["command_logits"], res["args_logits"])
args_y -= 1 # shift due to -1 PAD_VAL
visibility_y = _threshold_sample(res["visibility_logits"], threshold=0.7).bool().squeeze(-1) if self.cfg.decode_stages == 2 else None
commands_y, args_y = self._make_valid(commands_y, args_y, visibility_y)
else:
if z is None:
z = self.forward(commands_enc, args_enc, None, None, label=label, encode_mode=True)
PAD_VAL = -1
commands_y, args_y = z.new_zeros(1, 1, 1).fill_(SVGTensor.COMMANDS_SIMPLIFIED.index("SOS")).long(), z.new_ones(1, 1, 1, self.cfg.n_args).fill_(PAD_VAL).long()
for i in range(self.cfg.max_total_len):
res = self.forward(None, None, commands_y, args_y, label=label, z=z, hierarch_logits=hierarch_logits, return_tgt=False)
commands_new_y, args_new_y = _sample_categorical(temperature, res["command_logits"], res["args_logits"])
args_new_y -= 1 # shift due to -1 PAD_VAL
_, args_new_y = self._make_valid(commands_new_y, args_new_y)
commands_y, args_y = torch.cat([commands_y, commands_new_y[..., -1:]], dim=-1), torch.cat([args_y, args_new_y[..., -1:, :]], dim=-2)
commands_y, args_y = commands_y[..., 1:], args_y[..., 1:, :] # Discard SOS token
if self.cfg.rel_targets:
args_y = self._make_absolute(commands_y, args_y)
if concat_groups:
N = commands_y.size(0)
padding_mask_y = _get_padding_mask(commands_y, seq_dim=-1).bool()
commands_y, args_y = commands_y[padding_mask_y].reshape(N, -1), args_y[padding_mask_y].reshape(N, -1, self.cfg.n_args)
return commands_y, args_y
def _make_valid(self, commands_y, args_y, visibility_y=None, PAD_VAL=-1):
if visibility_y is not None:
S = commands_y.size(-1)
commands_y[~visibility_y] = commands_y.new_tensor([SVGTensor.COMMANDS_SIMPLIFIED.index("m"), *[SVGTensor.COMMANDS_SIMPLIFIED.index("EOS")] * (S - 1)])
args_y[~visibility_y] = PAD_VAL
mask = self.cmd_args_mask[commands_y.long()].bool()
args_y[~mask] = PAD_VAL
return commands_y, args_y
def _make_absolute(self, commands_y, args_y):
mask = self.cmd_args_mask[commands_y.long()].bool()
args_y[mask] -= self.cfg.args_dim - 1
real_commands = commands_y < SVGTensor.COMMANDS_SIMPLIFIED.index("EOS")
args_real_commands = args_y[real_commands]
end_pos = args_real_commands[:-1, SVGTensor.IndexArgs.END_POS].cumsum(dim=0)
args_real_commands[1:, SVGTensor.IndexArgs.CONTROL1] += end_pos
args_real_commands[1:, SVGTensor.IndexArgs.CONTROL2] += end_pos
args_real_commands[1:, SVGTensor.IndexArgs.END_POS] += end_pos
args_y[real_commands] = args_real_commands
_, args_y = self._make_valid(commands_y, args_y)
return args_y
|