Spaces:
Running
Running
File size: 10,509 Bytes
e17e8cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import math
import time
import torch
import torch.nn as nn
import dataset_helper
class AnimationTransformer(nn.Module):
def __init__(
self,
dim_model, # hidden_size; corresponds to embedding length
num_heads,
num_encoder_layers,
num_decoder_layers,
dropout_p,
use_positional_encoder=True
):
super().__init__()
self.model_type = "Transformer"
self.dim_model = dim_model
# TODO: Currently left out, as input sequence shuffled. Later check if use is beneficial.
self.use_positional_encoder = use_positional_encoder
self.positional_encoder = PositionalEncoding(
dim_model=dim_model,
dropout_p=dropout_p
)
self.transformer = nn.Transformer(
d_model=dim_model,
nhead=num_heads,
num_encoder_layers=num_encoder_layers,
num_decoder_layers=num_decoder_layers,
dropout=dropout_p,
batch_first=True
)
def forward(self, src, tgt, tgt_mask=None, src_key_padding_mask=None, tgt_key_padding_mask=None):
# Src size must be (batch_size, src sequence length)
# Tgt size must be (batch_size, tgt sequence length)
if self.use_positional_encoder:
src = self.positional_encoder(src)
tgt = self.positional_encoder(tgt)
# Transformer blocks - Out size = (sequence length, batch_size, num_tokens)
out = self.transformer(src, tgt, tgt_mask=tgt_mask, src_key_padding_mask=src_key_padding_mask,
tgt_key_padding_mask=tgt_key_padding_mask)
return out
def get_tgt_mask(size) -> torch.tensor:
# Generates a square matrix where each row allows one word more to be seen
mask = torch.tril(torch.ones(size, size) == 1) # Lower triangular matrix
mask = mask.float()
mask = mask.masked_fill(mask == 0, float('-inf')) # Convert zeros to -inf
mask = mask.masked_fill(mask == 1, float(0.0)) # Convert ones to 0
# EX for size=5:
# [[0., -inf, -inf, -inf, -inf],
# [0., 0., -inf, -inf, -inf],
# [0., 0., 0., -inf, -inf],
# [0., 0., 0., 0., -inf],
# [0., 0., 0., 0., 0.]]
return mask
def create_pad_mask(matrix: torch.tensor) -> torch.tensor:
pad_masks = []
# Iterate over each sequence in the batch.
for i in range(0, matrix.size(0)):
sequence = []
# Iterate over each element in the sequence and append True if padding value
for j in range(0, matrix.size(1)):
sequence.append(matrix[i, j, 0] == dataset_helper.PADDING_VALUE)
pad_masks.append(sequence)
#print("matrix", matrix, matrix.shape, "pad_mask", pad_masks)
return torch.tensor(pad_masks)
def _transformer_call_in_loops(model, batch, device, loss_function):
source, target = batch[0], batch[1]
source, target = source.to(device), target.to(device)
# First index is all batch entries, second is
target_input = target[:, :-1] # trg input is offset by one (SOS token and excluding EOS)
target_expected = target[:, 1:] # trg is offset by one (excluding SOS token)
# SOS - 1 - 2 - 3 - 4 - EOS - PAD - PAD // target_input
# 1 - 2 - 3 - 4 - EOS - PAD - PAD - PAD // target_expected
# Get mask to mask out the next words
tgt_mask = get_tgt_mask(target_input.size(1)).to(device)
# Standard training except we pass in y_input and tgt_mask
prediction = model(source, target_input,
tgt_mask=tgt_mask,
src_key_padding_mask=create_pad_mask(source).to(device),
# Mask with expected as EOS is no input (see above)
tgt_key_padding_mask=create_pad_mask(target_expected).to(device))
return loss_function(prediction, target_expected, create_pad_mask(target_expected).to(device))
#return loss_function(prediction, target_expected)
def train_loop(model, opt, loss_function, dataloader, device):
model.train()
total_loss = 0
t0 = time.time()
i = 1
for batch in dataloader:
loss = _transformer_call_in_loops(model, batch, device, loss_function)
opt.zero_grad()
loss.backward()
opt.step()
total_loss += loss.detach().item()
if i == 1 or i % 10 == 0:
elapsed_time = time.time() - t0
total_expected = elapsed_time / i * len(dataloader)
print(f">> {i}: Time per Batch {elapsed_time / i : .2f}s | "
f"Total expected {total_expected / 60 : .2f} min | "
f"Remaining {(total_expected - elapsed_time) / 60 : .2f} min ")
i += 1
print(f">> Epoch time: {(time.time() - t0)/60:.2f} min")
return total_loss / len(dataloader)
def validation_loop(model, loss_function, dataloader, device):
model.eval()
total_loss = 0
with torch.no_grad():
for batch in dataloader:
loss = _transformer_call_in_loops(model, batch, device, loss_function)
total_loss += loss.detach().item()
return total_loss / len(dataloader)
def fit(model, optimizer, loss_function, train_dataloader, val_dataloader, epochs, device):
train_loss_list, validation_loss_list = [], []
print("Training and validating model")
for epoch in range(epochs):
print("-" * 25, f"Epoch {epoch + 1}", "-" * 25)
train_loss = train_loop(model, optimizer, loss_function, train_dataloader, device)
train_loss_list += [train_loss]
validation_loss = validation_loop(model, loss_function, val_dataloader, device)
validation_loss_list += [validation_loss]
print(f"Training loss: {train_loss:.4f}")
print(f"Validation loss: {validation_loss:.4f}")
print()
return train_loss_list, validation_loss_list
def predict(model, source_sequence, sos_token: torch.Tensor, device, max_length=32, eos_scaling=1, backpropagate=False, showResult= True):
if backpropagate:
model.train()
else:
model.eval()
source_sequence = source_sequence.float().to(device)
y_input = torch.unsqueeze(sos_token, dim=0).float().to(device)
i = 0
while i < max_length:
# Get source mask
prediction = model(source_sequence.unsqueeze(0), y_input.unsqueeze(0), # un-squeeze for batch
# tgt_mask=get_tgt_mask(y_input.size(0)).to(device),
src_key_padding_mask=create_pad_mask(source_sequence.unsqueeze(0)).to(device))
next_embedding = prediction[0, -1, :] # prediction on last token
pred_deep_svg, pred_type, pred_parameters = dataset_helper.unpack_embedding(next_embedding, dim=0)
#print(pred_deep_svg, pred_type, pred_parameters)
pred_deep_svg, pred_type, pred_parameters = pred_deep_svg.to(device), pred_type.to(device), pred_parameters.to(
device)
# === TYPE ===
# Apply Softmax
type_softmax = torch.softmax(pred_type, dim=0)
type_softmax[0] = type_softmax[0] * eos_scaling # Reduce EOS
animation_type = torch.argmax(type_softmax, dim=0)
# Break if EOS is most likely
if animation_type == 0:
print("END OF ANIMATION")
y_input = torch.cat((y_input, sos_token.unsqueeze(0).to(device)), dim=0)
return y_input
pred_type = torch.zeros(11)
pred_type[animation_type] = 1
# === DEEP SVG ===
# Find the closest path
distances = [torch.norm(pred_deep_svg - embedding[:-26]) for embedding in source_sequence]
closest_index = distances.index(min(distances))
closest_token = source_sequence[closest_index]
# === PARAMETERS ===
# overwrite unused parameters
for j in range(len(pred_parameters)):
if j in dataset_helper.ANIMATION_PARAMETER_INDICES[int(animation_type)]:
continue
pred_parameters[j] = -1
# === SEQUENCE ===
y_new = torch.concat([closest_token[:-26], pred_type.to(device), pred_parameters], dim=0)
y_input = torch.cat((y_input, y_new.unsqueeze(0)), dim=0)
# === INFO PRINT ===
if showResult:
print(f"{int(y_input.size(0))}: Path {closest_index} ({round(float(distances[closest_index]), 3)}) "
f"got animation {animation_type} ({round(float(type_softmax[animation_type]), 3)}%) "
f"with parameters {[round(num, 2) for num in pred_parameters.tolist()]}")
i += 1
return y_input
class PositionalEncoding(nn.Module):
def __init__(self, dim_model, dropout_p, max_len=5000):
"""
Initializes the PositionalEncoding module which injects information about the relative or absolute position
of the tokens in the sequence. The positional encodings have the same dimension as the embeddings so that the
two can be summed. Uses a sinusoidal pattern for positional encoding.
Args:
dim_model (int): The dimension of the embeddings and the expected dimension of the positional encoding.
dropout_p (float): Dropout probability to be applied to the summed embeddings and positional encodings.
max_len (int): The max length of the sequences for which positional encodings are precomputed and stored.
"""
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout_p)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, dim_model, 2).float() * (-math.log(10000.0) / dim_model))
pos_encoding = torch.zeros(max_len, 1, dim_model)
pos_encoding[:, 0, 0::2] = torch.sin(position * div_term)
pos_encoding[:, 0, 1::2] = torch.cos(position * div_term)
self.register_buffer('pos_encoding', pos_encoding)
def forward(self, embedding: torch.Tensor) -> torch.Tensor:
"""
Applies positional encoding to the input embeddings and applies dropout.
Args:
embedding (torch.Tensor): The input embeddings with shape [batch_size, seq_len, dim_model]
Returns:
torch.Tensor: The embeddings with positional encoding applied, and dropout, having the same shape as the
input token embeddings [seq_len, batch_size, dim_model].
"""
return self.dropout(embedding + self.pos_encoding[:embedding.size(0), :])
|