File size: 31,651 Bytes
87f70d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
import contextlib
import gc
import os
import re
import requests
import gc
import sys

from encodec import EncodecModel
import funcy
import logging
import numpy as np
from scipy.special import softmax
import torch
import torch.nn.functional as F
import tqdm
from transformers import BertTokenizer
from huggingface_hub import hf_hub_download, hf_hub_url

from .model import GPTConfig, GPT
from .model_fine import FineGPT, FineGPTConfig
from .settings import initenv

initenv(sys.argv)
global_force_cpu = os.environ.get("BARK_FORCE_CPU", False)
if (
    global_force_cpu != True and
    torch.cuda.is_available() and
    hasattr(torch.cuda, "amp") and
    hasattr(torch.cuda.amp, "autocast") and
    hasattr(torch.cuda, "is_bf16_supported") and
    torch.cuda.is_bf16_supported()
):
    autocast = funcy.partial(torch.cuda.amp.autocast, dtype=torch.bfloat16)
else:
    @contextlib.contextmanager
    def autocast():
        yield


# hold models in global scope to lazy load
global models
models = {}

global models_devices
models_devices = {}


CONTEXT_WINDOW_SIZE = 1024

SEMANTIC_RATE_HZ = 49.9
SEMANTIC_VOCAB_SIZE = 10_000

CODEBOOK_SIZE = 1024
N_COARSE_CODEBOOKS = 2
N_FINE_CODEBOOKS = 8
COARSE_RATE_HZ = 75

SAMPLE_RATE = 24_000


SUPPORTED_LANGS = [
    ("English", "en"),
    ("German", "de"),
    ("Spanish", "es"),
    ("French", "fr"),
    ("Hindi", "hi"),
    ("Italian", "it"),
    ("Japanese", "ja"),
    ("Korean", "ko"),
    ("Polish", "pl"),
    ("Portuguese", "pt"),
    ("Russian", "ru"),
    ("Turkish", "tr"),
    ("Chinese", "zh"),
]

ALLOWED_PROMPTS = {"announcer"}
for _, lang in SUPPORTED_LANGS:
    for prefix in ("", f"v2{os.path.sep}"):
        for n in range(10):
            ALLOWED_PROMPTS.add(f"{prefix}{lang}_speaker_{n}")


logger = logging.getLogger(__name__)


CUR_PATH = os.path.dirname(os.path.abspath(__file__))


#default_cache_dir = os.path.join(os.path.expanduser("~"), ".cache")
#CACHE_DIR = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0")
#CACHE_DIR = os.path.join(os.getcwd(), "models"
CACHE_DIR = "./models"


def _cast_bool_env_var(s):
    return s.lower() in ('true', '1', 't')

USE_SMALL_MODELS = _cast_bool_env_var(os.environ.get("SUNO_USE_SMALL_MODELS", "False"))
GLOBAL_ENABLE_MPS = _cast_bool_env_var(os.environ.get("SUNO_ENABLE_MPS", "False"))
OFFLOAD_CPU = _cast_bool_env_var(os.environ.get("SUNO_OFFLOAD_CPU", "False"))

REMOTE_MODEL_PATHS = {
    "text_small": {
        "repo_id": "suno/bark",
        "file_name": "text.pt",
    },
    "coarse_small": {
        "repo_id": "suno/bark",
        "file_name": "coarse.pt",
    },
    "fine_small": {
        "repo_id": "suno/bark",
        "file_name": "fine.pt",
    },
    "text": {
        "repo_id": "suno/bark",
        "file_name": "text_2.pt",
    },
    "coarse": {
        "repo_id": "suno/bark",
        "file_name": "coarse_2.pt",
    },
    "fine": {
        "repo_id": "suno/bark",
        "file_name": "fine_2.pt",
    },
}


if not hasattr(torch.nn.functional, 'scaled_dot_product_attention') and torch.cuda.is_available():
    logger.warning(
        "torch version does not support flash attention. You will get faster" +
        " inference speed by upgrade torch to newest nightly version."
    )


def grab_best_device(use_gpu=True):
    if torch.cuda.device_count() > 0 and use_gpu:
        device = "cuda"
    elif torch.backends.mps.is_available() and use_gpu and GLOBAL_ENABLE_MPS:
        device = "mps"
    else:
        device = "cpu"
    return device


def _get_ckpt_path(model_type, use_small=False):
    key = model_type
    if use_small or USE_SMALL_MODELS:
        key += "_small"
    return os.path.join(CACHE_DIR, REMOTE_MODEL_PATHS[key]["file_name"])

"""
def _download(from_hf_path, file_name, destfilename):
    os.makedirs(CACHE_DIR, exist_ok=True)
    hf_hub_download(repo_id=from_hf_path, filename=file_name, local_dir=CACHE_DIR, local_dir_use_symlinks=False)
    # Bug in original repo? Downloaded name differs from expected...
    if not os.path.exists(destfilename):
        localname = os.path.join(CACHE_DIR, file_name)
        os.rename(localname, destfilename)
"""
def _download(from_hf_path, file_name):
    os.makedirs(CACHE_DIR, exist_ok=True)
    hf_hub_download(repo_id=from_hf_path, filename=file_name, local_dir=CACHE_DIR)


class InferenceContext:
    def __init__(self, benchmark=False):
        # we can't expect inputs to be the same length, so disable benchmarking by default
        self._chosen_cudnn_benchmark = benchmark
        self._cudnn_benchmark = None

    def __enter__(self):
        self._cudnn_benchmark = torch.backends.cudnn.benchmark
        torch.backends.cudnn.benchmark = self._chosen_cudnn_benchmark

    def __exit__(self, exc_type, exc_value, exc_traceback):
        torch.backends.cudnn.benchmark = self._cudnn_benchmark


if torch.cuda.is_available():
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True


@contextlib.contextmanager
def _inference_mode():
    with InferenceContext(), torch.inference_mode(), torch.no_grad(), autocast():
        yield


def _clear_cuda_cache():
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()


def clean_models(model_key=None):
    global models
    model_keys = [model_key] if model_key is not None else models.keys()
    for k in model_keys:
        if k in models:
            del models[k]
    _clear_cuda_cache()
    gc.collect()


def _load_model(ckpt_path, device, use_small=False, model_type="text"):
    if model_type == "text":
        ConfigClass = GPTConfig
        ModelClass = GPT
    elif model_type == "coarse":
        ConfigClass = GPTConfig
        ModelClass = GPT
    elif model_type == "fine":
        ConfigClass = FineGPTConfig
        ModelClass = FineGPT
    else:
        raise NotImplementedError()

    # Force-remove Models to allow running on >12Gb GPU
    # CF: Probably not needed anymore
    #global models
    #models.clear()
    #gc.collect()
    #torch.cuda.empty_cache()
    # to here...

    model_key = f"{model_type}_small" if use_small or USE_SMALL_MODELS else model_type
    model_info = REMOTE_MODEL_PATHS[model_key]
    if not os.path.exists(ckpt_path):
        logger.info(f"{model_type} model not found, downloading into `{CACHE_DIR}`.")
        ## added next two lines to make it super clear which model is being downloaded
        remote_filename = hf_hub_url(model_info["repo_id"], model_info["file_name"])
        print(f"Downloading {model_key} {model_info['repo_id']} remote model file {remote_filename} {model_info['file_name']} to {CACHE_DIR}")
        _download(model_info["repo_id"], model_info["file_name"])
        # add next line to make it super clear which model is being loaded
    print(f"Loading {model_key} model from {ckpt_path} to {device}") # added
    checkpoint = torch.load(ckpt_path, map_location=device)
    # this is a hack
    model_args = checkpoint["model_args"]
    if "input_vocab_size" not in model_args:
        model_args["input_vocab_size"] = model_args["vocab_size"]
        model_args["output_vocab_size"] = model_args["vocab_size"]
        del model_args["vocab_size"]
    gptconf = ConfigClass(**checkpoint["model_args"])
    model = ModelClass(gptconf)
    state_dict = checkpoint["model"]
    # fixup checkpoint
    unwanted_prefix = "_orig_mod."
    for k, v in list(state_dict.items()):
        if k.startswith(unwanted_prefix):
            state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k)
    extra_keys = set(state_dict.keys()) - set(model.state_dict().keys())
    extra_keys = set([k for k in extra_keys if not k.endswith(".attn.bias")])
    missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
    missing_keys = set([k for k in missing_keys if not k.endswith(".attn.bias")])
    if len(extra_keys) != 0:
        raise ValueError(f"extra keys found: {extra_keys}")
    if len(missing_keys) != 0:
        raise ValueError(f"missing keys: {missing_keys}")
    model.load_state_dict(state_dict, strict=False)
    n_params = model.get_num_params()
    val_loss = checkpoint["best_val_loss"].item()
    logger.info(f"model loaded: {round(n_params/1e6,1)}M params, {round(val_loss,3)} loss")
    model.eval()
    model.to(device)
    del checkpoint, state_dict
    _clear_cuda_cache()
    if model_type == "text":
        tokenizer = BertTokenizer.from_pretrained("bert-base-multilingual-cased")
        return {
            "model": model,
            "tokenizer": tokenizer,
        }
    return model


def _load_codec_model(device):
    model = EncodecModel.encodec_model_24khz()
    model.set_target_bandwidth(6.0)
    model.eval()
    model.to(device)
    _clear_cuda_cache()
    return model


def load_model(use_gpu=True, use_small=False, force_reload=False, model_type="text"):
    _load_model_f = funcy.partial(_load_model, model_type=model_type, use_small=use_small)
    if model_type not in ("text", "coarse", "fine"):
        raise NotImplementedError()
    global models
    global models_devices
    device = grab_best_device(use_gpu=use_gpu)
    model_key = f"{model_type}"
    if OFFLOAD_CPU:
        models_devices[model_key] = device
        device = "cpu"
    if model_key not in models or force_reload:
        ckpt_path = _get_ckpt_path(model_type, use_small=use_small)
        clean_models(model_key=model_key)
        model = _load_model_f(ckpt_path, device)
        models[model_key] = model
    if model_type == "text":
        models[model_key]["model"].to(device)
    else:
        models[model_key].to(device)
    return models[model_key]


def load_codec_model(use_gpu=True, force_reload=False):
    global models
    global models_devices
    device = grab_best_device(use_gpu=use_gpu)
    if device == "mps":
        # encodec doesn't support mps
        device = "cpu"
    model_key = "codec"
    if OFFLOAD_CPU:
        models_devices[model_key] = device
        device = "cpu"
    if model_key not in models or force_reload:
        clean_models(model_key=model_key)
        model = _load_codec_model(device)
        models[model_key] = model
    models[model_key].to(device)
    return models[model_key]


def preload_models(
    text_use_gpu=True,
    text_use_small=False,
    coarse_use_gpu=True,
    coarse_use_small=False,
    fine_use_gpu=True,
    fine_use_small=False,
    codec_use_gpu=True,
    force_reload=False
):
    """Load all the necessary models for the pipeline."""
    if grab_best_device() == "cpu" and (
        text_use_gpu or coarse_use_gpu or fine_use_gpu or codec_use_gpu
    ):
        logger.warning("No GPU being used. Careful, inference might be very slow!")
    _ = load_model(
        model_type="text", use_gpu=text_use_gpu, use_small=text_use_small, force_reload=force_reload
    )
    _ = load_model(
        model_type="coarse",
        use_gpu=coarse_use_gpu,
        use_small=coarse_use_small,
        force_reload=force_reload,
    )
    _ = load_model(
        model_type="fine", use_gpu=fine_use_gpu, use_small=fine_use_small, force_reload=force_reload
    )
    _ = load_codec_model(use_gpu=codec_use_gpu, force_reload=force_reload)


####
# Generation Functionality
####


def _tokenize(tokenizer, text):
    return tokenizer.encode(text, add_special_tokens=False)


def _detokenize(tokenizer, enc_text):
    return tokenizer.decode(enc_text)


def _normalize_whitespace(text):
    return re.sub(r"\s+", " ", text).strip()


TEXT_ENCODING_OFFSET = 10_048
SEMANTIC_PAD_TOKEN = 10_000
TEXT_PAD_TOKEN = 129_595
SEMANTIC_INFER_TOKEN = 129_599


def _load_history_prompt(history_prompt_input):
    if isinstance(history_prompt_input, str) and history_prompt_input.endswith(".npz"):
        history_prompt = np.load(history_prompt_input)
    elif isinstance(history_prompt_input, str):
        # make sure this works on non-ubuntu
        history_prompt_input = os.path.join(*history_prompt_input.split("/"))
#        if history_prompt_input not in ALLOWED_PROMPTS:
#            raise ValueError("history prompt not found")
        history_prompt = np.load(
            os.path.join(CUR_PATH, "assets", "prompts", f"{history_prompt_input}.npz")
        )
    elif isinstance(history_prompt_input, dict):
        assert("semantic_prompt" in history_prompt_input)
        assert("coarse_prompt" in history_prompt_input)
        assert("fine_prompt" in history_prompt_input)
        history_prompt = history_prompt_input
    else:
        raise ValueError("history prompt format unrecognized")
    return history_prompt


def generate_text_semantic(
    text,
    history_prompt=None,
    temp=0.7,
    top_k=None,
    top_p=None,
    silent=False,
    min_eos_p=0.2,
    max_gen_duration_s=None,
    allow_early_stop=True,
    use_kv_caching=False,
):
    """Generate semantic tokens from text."""
    assert isinstance(text, str)
    text = _normalize_whitespace(text)
    assert len(text.strip()) > 0
    if history_prompt is not None:
        history_prompt = _load_history_prompt(history_prompt)
        semantic_history = history_prompt["semantic_prompt"]
        assert (
            isinstance(semantic_history, np.ndarray)
            and len(semantic_history.shape) == 1
            and len(semantic_history) > 0
            and semantic_history.min() >= 0
            and semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1
        )
    else:
        semantic_history = None
    # load models if not yet exist
    global models
    global models_devices
    if "text" not in models:
        preload_models()
    model_container = models["text"]
    model = model_container["model"]
    tokenizer = model_container["tokenizer"]
    encoded_text = np.array(_tokenize(tokenizer, text)) + TEXT_ENCODING_OFFSET
    if OFFLOAD_CPU:
        model.to(models_devices["text"])
    device = next(model.parameters()).device
    if len(encoded_text) > 256:
        p = round((len(encoded_text) - 256) / len(encoded_text) * 100, 1)
        logger.warning(f"warning, text too long, lopping of last {p}%")
        encoded_text = encoded_text[:256]
    encoded_text = np.pad(
        encoded_text,
        (0, 256 - len(encoded_text)),
        constant_values=TEXT_PAD_TOKEN,
        mode="constant",
    )
    if semantic_history is not None:
        semantic_history = semantic_history.astype(np.int64)
        # lop off if history is too long, pad if needed
        semantic_history = semantic_history[-256:]
        semantic_history = np.pad(
            semantic_history,
            (0, 256 - len(semantic_history)),
            constant_values=SEMANTIC_PAD_TOKEN,
            mode="constant",
        )
    else:
        semantic_history = np.array([SEMANTIC_PAD_TOKEN] * 256)
    x = torch.from_numpy(
        np.hstack([
            encoded_text, semantic_history, np.array([SEMANTIC_INFER_TOKEN])
        ]).astype(np.int64)
    )[None]
    assert x.shape[1] == 256 + 256 + 1
    with _inference_mode():
        x = x.to(device)
        n_tot_steps = 768
        # custom tqdm updates since we don't know when eos will occur
        pbar = tqdm.tqdm(disable=silent, total=100)
        pbar_state = 0
        tot_generated_duration_s = 0
        kv_cache = None
        for n in range(n_tot_steps):
            if use_kv_caching and kv_cache is not None:
                x_input = x[:, [-1]]
            else:
                x_input = x
            logits, kv_cache = model(
                x_input, merge_context=True, use_cache=use_kv_caching, past_kv=kv_cache
            )
            relevant_logits = logits[0, 0, :SEMANTIC_VOCAB_SIZE]
            if allow_early_stop:
                relevant_logits = torch.hstack(
                    (relevant_logits, logits[0, 0, [SEMANTIC_PAD_TOKEN]])  # eos
                )
            if top_p is not None:
                # faster to convert to numpy
                original_device = relevant_logits.device
                relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy()
                sorted_indices = np.argsort(relevant_logits)[::-1]
                sorted_logits = relevant_logits[sorted_indices]
                cumulative_probs = np.cumsum(softmax(sorted_logits))
                sorted_indices_to_remove = cumulative_probs > top_p
                sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy()
                sorted_indices_to_remove[0] = False
                relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf
                relevant_logits = torch.from_numpy(relevant_logits)
                relevant_logits = relevant_logits.to(original_device)
            if top_k is not None:
                v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1)))
                relevant_logits[relevant_logits < v[-1]] = -float("Inf")
            probs = F.softmax(relevant_logits / temp, dim=-1)
            # multinomial bugged on mps: shuttle to cpu if necessary
            inf_device = probs.device
            if probs.device.type == "mps":
                probs = probs.to("cpu")
            item_next = torch.multinomial(probs, num_samples=1)
            probs = probs.to(inf_device)
            item_next = item_next.to(inf_device)
            if allow_early_stop and (
                item_next == SEMANTIC_VOCAB_SIZE
                or (min_eos_p is not None and probs[-1] >= min_eos_p)
            ):
                # eos found, so break
                pbar.update(100 - pbar_state)
                break
            x = torch.cat((x, item_next[None]), dim=1)
            tot_generated_duration_s += 1 / SEMANTIC_RATE_HZ
            if max_gen_duration_s is not None and tot_generated_duration_s > max_gen_duration_s:
                pbar.update(100 - pbar_state)
                break
            if n == n_tot_steps - 1:
                pbar.update(100 - pbar_state)
                break
            del logits, relevant_logits, probs, item_next
            req_pbar_state = np.min([100, int(round(100 * n / n_tot_steps))])
            if req_pbar_state > pbar_state:
                pbar.update(req_pbar_state - pbar_state)
            pbar_state = req_pbar_state
        pbar.close()
        out = x.detach().cpu().numpy().squeeze()[256 + 256 + 1 :]
    if OFFLOAD_CPU:
        model.to("cpu")
    assert all(0 <= out) and all(out < SEMANTIC_VOCAB_SIZE)
    _clear_cuda_cache()
    return out


def _flatten_codebooks(arr, offset_size=CODEBOOK_SIZE):
    assert len(arr.shape) == 2
    arr = arr.copy()
    if offset_size is not None:
        for n in range(1, arr.shape[0]):
            arr[n, :] += offset_size * n
    flat_arr = arr.ravel("F")
    return flat_arr


COARSE_SEMANTIC_PAD_TOKEN = 12_048
COARSE_INFER_TOKEN = 12_050


def generate_coarse(
    x_semantic,
    history_prompt=None,
    temp=0.7,
    top_k=None,
    top_p=None,
    silent=False,
    max_coarse_history=630,  # min 60 (faster), max 630 (more context)
    sliding_window_len=60,
    use_kv_caching=False,
):
    """Generate coarse audio codes from semantic tokens."""
# CF: Uncommented because it breaks swap voice more than once
#    assert (
#        isinstance(x_semantic, np.ndarray)
#        and len(x_semantic.shape) == 1
#        and len(x_semantic) > 0
#        and x_semantic.min() >= 0
#        and x_semantic.max() <= SEMANTIC_VOCAB_SIZE - 1
#    )
    assert 60 <= max_coarse_history <= 630
    assert max_coarse_history + sliding_window_len <= 1024 - 256
    semantic_to_coarse_ratio = COARSE_RATE_HZ / SEMANTIC_RATE_HZ * N_COARSE_CODEBOOKS
    max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio))
    if history_prompt is not None:
        history_prompt = _load_history_prompt(history_prompt)
        x_semantic_history = history_prompt["semantic_prompt"]
        x_coarse_history = history_prompt["coarse_prompt"]
        assert (
            isinstance(x_semantic_history, np.ndarray)
            and len(x_semantic_history.shape) == 1
            and len(x_semantic_history) > 0
            and x_semantic_history.min() >= 0
            and x_semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1
            and isinstance(x_coarse_history, np.ndarray)
            and len(x_coarse_history.shape) == 2
            and x_coarse_history.shape[0] == N_COARSE_CODEBOOKS
            and x_coarse_history.shape[-1] >= 0
            and x_coarse_history.min() >= 0
            and x_coarse_history.max() <= CODEBOOK_SIZE - 1
            #and (
            #    round(x_coarse_history.shape[-1] / len(x_semantic_history), 1)
            #    == round(semantic_to_coarse_ratio / N_COARSE_CODEBOOKS, 1)
            #)
        )
        x_coarse_history = _flatten_codebooks(x_coarse_history) + SEMANTIC_VOCAB_SIZE
        # trim histories correctly
        n_semantic_hist_provided = np.min(
            [
                max_semantic_history,
                len(x_semantic_history) - len(x_semantic_history) % 2,
                int(np.floor(len(x_coarse_history) / semantic_to_coarse_ratio)),
            ]
        )
        n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio))
        x_semantic_history = x_semantic_history[-n_semantic_hist_provided:].astype(np.int32)
        x_coarse_history = x_coarse_history[-n_coarse_hist_provided:].astype(np.int32)
        # TODO: bit of a hack for time alignment (sounds better)
        x_coarse_history = x_coarse_history[:-2]
    else:
        x_semantic_history = np.array([], dtype=np.int32)
        x_coarse_history = np.array([], dtype=np.int32)
    # load models if not yet exist
    global models
    global models_devices
    if "coarse" not in models:
        preload_models()
    model = models["coarse"]
    if OFFLOAD_CPU:
        model.to(models_devices["coarse"])
    device = next(model.parameters()).device
    # start loop
    n_steps = int(
        round(
            np.floor(len(x_semantic) * semantic_to_coarse_ratio / N_COARSE_CODEBOOKS)
            * N_COARSE_CODEBOOKS
        )
    )
    assert n_steps > 0 and n_steps % N_COARSE_CODEBOOKS == 0
    x_semantic = np.hstack([x_semantic_history, x_semantic]).astype(np.int32)
    x_coarse = x_coarse_history.astype(np.int32)
    base_semantic_idx = len(x_semantic_history)
    with _inference_mode():
        x_semantic_in = torch.from_numpy(x_semantic)[None].to(device)
        x_coarse_in = torch.from_numpy(x_coarse)[None].to(device)
        n_window_steps = int(np.ceil(n_steps / sliding_window_len))
        n_step = 0
        for _ in tqdm.tqdm(range(n_window_steps), total=n_window_steps, disable=silent):
            semantic_idx = base_semantic_idx + int(round(n_step / semantic_to_coarse_ratio))
            # pad from right side
            x_in = x_semantic_in[:, np.max([0, semantic_idx - max_semantic_history]) :]
            x_in = x_in[:, :256]
            x_in = F.pad(
                x_in,
                (0, 256 - x_in.shape[-1]),
                "constant",
                COARSE_SEMANTIC_PAD_TOKEN,
            )
            x_in = torch.hstack(
                [
                    x_in,
                    torch.tensor([COARSE_INFER_TOKEN])[None].to(device),
                    x_coarse_in[:, -max_coarse_history:],
                ]
            )
            kv_cache = None
            for _ in range(sliding_window_len):
                if n_step >= n_steps:
                    continue
                is_major_step = n_step % N_COARSE_CODEBOOKS == 0

                if use_kv_caching and kv_cache is not None:
                    x_input = x_in[:, [-1]]
                else:
                    x_input = x_in

                logits, kv_cache = model(x_input, use_cache=use_kv_caching, past_kv=kv_cache)
                logit_start_idx = (
                    SEMANTIC_VOCAB_SIZE + (1 - int(is_major_step)) * CODEBOOK_SIZE
                )
                logit_end_idx = (
                    SEMANTIC_VOCAB_SIZE + (2 - int(is_major_step)) * CODEBOOK_SIZE
                )
                relevant_logits = logits[0, 0, logit_start_idx:logit_end_idx]
                if top_p is not None:
                    # faster to convert to numpy
                    original_device = relevant_logits.device
                    relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy()
                    sorted_indices = np.argsort(relevant_logits)[::-1]
                    sorted_logits = relevant_logits[sorted_indices]
                    cumulative_probs = np.cumsum(softmax(sorted_logits))
                    sorted_indices_to_remove = cumulative_probs > top_p
                    sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy()
                    sorted_indices_to_remove[0] = False
                    relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf
                    relevant_logits = torch.from_numpy(relevant_logits)
                    relevant_logits = relevant_logits.to(original_device)
                if top_k is not None:
                    v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1)))
                    relevant_logits[relevant_logits < v[-1]] = -float("Inf")
                probs = F.softmax(relevant_logits / temp, dim=-1)
                # multinomial bugged on mps: shuttle to cpu if necessary
                inf_device = probs.device
                if probs.device.type == "mps":
                    probs = probs.to("cpu")
                item_next = torch.multinomial(probs, num_samples=1)
                probs = probs.to(inf_device)
                item_next = item_next.to(inf_device)
                item_next += logit_start_idx
                x_coarse_in = torch.cat((x_coarse_in, item_next[None]), dim=1)
                x_in = torch.cat((x_in, item_next[None]), dim=1)
                del logits, relevant_logits, probs, item_next
                n_step += 1
            del x_in
        del x_semantic_in
    if OFFLOAD_CPU:
        model.to("cpu")
    gen_coarse_arr = x_coarse_in.detach().cpu().numpy().squeeze()[len(x_coarse_history) :]
    del x_coarse_in
    assert len(gen_coarse_arr) == n_steps
    gen_coarse_audio_arr = gen_coarse_arr.reshape(-1, N_COARSE_CODEBOOKS).T - SEMANTIC_VOCAB_SIZE
    for n in range(1, N_COARSE_CODEBOOKS):
        gen_coarse_audio_arr[n, :] -= n * CODEBOOK_SIZE
    _clear_cuda_cache()
    return gen_coarse_audio_arr


def generate_fine(
    x_coarse_gen,
    history_prompt=None,
    temp=0.5,
    silent=True,
):
    """Generate full audio codes from coarse audio codes."""
    assert (
        isinstance(x_coarse_gen, np.ndarray)
        and len(x_coarse_gen.shape) == 2
        and 1 <= x_coarse_gen.shape[0] <= N_FINE_CODEBOOKS - 1
        and x_coarse_gen.shape[1] > 0
        and x_coarse_gen.min() >= 0
        and x_coarse_gen.max() <= CODEBOOK_SIZE - 1
    )
    if history_prompt is not None:
        history_prompt = _load_history_prompt(history_prompt)
        x_fine_history = history_prompt["fine_prompt"]
        assert (
            isinstance(x_fine_history, np.ndarray)
            and len(x_fine_history.shape) == 2
            and x_fine_history.shape[0] == N_FINE_CODEBOOKS
            and x_fine_history.shape[1] >= 0
            and x_fine_history.min() >= 0
            and x_fine_history.max() <= CODEBOOK_SIZE - 1
        )
    else:
        x_fine_history = None
    n_coarse = x_coarse_gen.shape[0]
    # load models if not yet exist
    global models
    global models_devices
    if "fine" not in models:
        preload_models()
    model = models["fine"]
    if OFFLOAD_CPU:
        model.to(models_devices["fine"])
    device = next(model.parameters()).device
    # make input arr
    in_arr = np.vstack(
        [
            x_coarse_gen,
            np.zeros((N_FINE_CODEBOOKS - n_coarse, x_coarse_gen.shape[1]))
            + CODEBOOK_SIZE,  # padding
        ]
    ).astype(np.int32)
    # prepend history if available (max 512)
    if x_fine_history is not None:
        x_fine_history = x_fine_history.astype(np.int32)
        in_arr = np.hstack(
            [
                x_fine_history[:, -512:].astype(np.int32),
                in_arr,
            ]
        )
        n_history = x_fine_history[:, -512:].shape[1]
    else:
        n_history = 0
    n_remove_from_end = 0
    # need to pad if too short (since non-causal model)
    if in_arr.shape[1] < 1024:
        n_remove_from_end = 1024 - in_arr.shape[1]
        in_arr = np.hstack(
            [
                in_arr,
                np.zeros((N_FINE_CODEBOOKS, n_remove_from_end), dtype=np.int32) + CODEBOOK_SIZE,
            ]
        )
    # we can be lazy about fractional loop and just keep overwriting codebooks
    n_loops = np.max([0, int(np.ceil((x_coarse_gen.shape[1] - (1024 - n_history)) / 512))]) + 1
    with _inference_mode():
        in_arr = torch.tensor(in_arr.T).to(device)
        for n in tqdm.tqdm(range(n_loops), disable=silent):
            start_idx = np.min([n * 512, in_arr.shape[0] - 1024])
            start_fill_idx = np.min([n_history + n * 512, in_arr.shape[0] - 512])
            rel_start_fill_idx = start_fill_idx - start_idx
            in_buffer = in_arr[start_idx : start_idx + 1024, :][None]
            for nn in range(n_coarse, N_FINE_CODEBOOKS):
                logits = model(nn, in_buffer)
                if temp is None:
                    relevant_logits = logits[0, rel_start_fill_idx:, :CODEBOOK_SIZE]
                    codebook_preds = torch.argmax(relevant_logits, -1)
                else:
                    relevant_logits = logits[0, :, :CODEBOOK_SIZE] / temp
                    probs = F.softmax(relevant_logits, dim=-1)
                    # multinomial bugged on mps: shuttle to cpu if necessary
                    inf_device = probs.device
                    if probs.device.type == "mps":
                        probs = probs.to("cpu")
                    codebook_preds = torch.hstack(
                        [
                            torch.multinomial(probs[nnn], num_samples=1).to(inf_device)
                            for nnn in range(rel_start_fill_idx, 1024)
                        ]
                    )
                in_buffer[0, rel_start_fill_idx:, nn] = codebook_preds
                del logits, codebook_preds
            # transfer over info into model_in and convert to numpy
            for nn in range(n_coarse, N_FINE_CODEBOOKS):
                in_arr[
                    start_fill_idx : start_fill_idx + (1024 - rel_start_fill_idx), nn
                ] = in_buffer[0, rel_start_fill_idx:, nn]
            del in_buffer
        gen_fine_arr = in_arr.detach().cpu().numpy().squeeze().T
        del in_arr
    if OFFLOAD_CPU:
        model.to("cpu")
    gen_fine_arr = gen_fine_arr[:, n_history:]
    if n_remove_from_end > 0:
        gen_fine_arr = gen_fine_arr[:, :-n_remove_from_end]
    assert gen_fine_arr.shape[-1] == x_coarse_gen.shape[-1]
    _clear_cuda_cache()
    return gen_fine_arr


def codec_decode(fine_tokens):
    """Turn quantized audio codes into audio array using encodec."""
    # load models if not yet exist
    global models
    global models_devices
    if "codec" not in models:
        preload_models()
    model = models["codec"]
    if OFFLOAD_CPU:
        model.to(models_devices["codec"])
    device = next(model.parameters()).device
    arr = torch.from_numpy(fine_tokens)[None]
    arr = arr.to(device)
    arr = arr.transpose(0, 1)
    emb = model.quantizer.decode(arr)
    out = model.decoder(emb)
    audio_arr = out.detach().cpu().numpy().squeeze()
    del arr, emb, out
    if OFFLOAD_CPU:
        model.to("cpu")
    return audio_arr