ingtech commited on
Commit
5949c93
·
verified ·
1 Parent(s): 5b8d181

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +67 -0
app.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import joblib
3
+ import numpy as np
4
+ import pandas as pd
5
+ from huggingface_hub import hf_hub_download
6
+ from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder
7
+
8
+ # Load the trained model and scaler objects from file
9
+ REPO_ID = "Hemg/marketpredict" # Hugging Face repo ID
10
+ MoDEL_FILENAME = "stx.joblib" # Model file name
11
+ SCALER_FILENAME = "scaler.joblib" # Scaler file name
12
+
13
+ model = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=MoDEL_FILENAME))
14
+ scaler = joblib.load(hf_hub_download(repo_id=REPO_ID, filename=SCALER_FILENAME))
15
+
16
+ def encode_categorical_columns(df):
17
+ label_encoder = LabelEncoder()
18
+ ordinal_columns = df.select_dtypes(include=['object']).columns
19
+
20
+ for col in ordinal_columns:
21
+ df[col] = label_encoder.fit_transform(df[col])
22
+
23
+ nominal_columns = df.select_dtypes(include=['object']).columns.difference(ordinal_columns)
24
+ df = pd.get_dummies(df, columns=nominal_columns, drop_first=True)
25
+
26
+ return df
27
+
28
+ # Define the prediction function
29
+ def predict_performance(Year, Instagram_Advertising, Facebook_Advertising, Event_Expenses, Internet_Expenses):
30
+ # Prepare input data (represents independent variables for house prediction)
31
+ input_data = [[Year, Instagram_Advertising, Facebook_Advertising, Event_Expenses, Internet_Expenses]]
32
+
33
+ # Get the feature names from the Gradio interface inputs
34
+ feature_names = ["Year", "Instagram_Advertising", "Facebook_Advertising", "Event_Expenses", "Internet_Expenses"]
35
+
36
+ # Create a Pandas DataFrame with the input data and feature names
37
+ input_df = pd.DataFrame(input_data, columns=feature_names)
38
+
39
+ input_df = encode_categorical_columns(input_df)
40
+
41
+ # Scale the input data using the loaded scaler
42
+ scaled_input = scaler.transform(input_df)
43
+
44
+ # Make predictions using the loaded model
45
+ prediction = model.predict(scaled_input)[0]
46
+
47
+ # Return the result as HTML with custom styling (green color and larger font)
48
+ return f'<p style="font-size: 24px; color: green;">Forecast no of. Students admission: {prediction:,.0f}</p>'
49
+
50
+ # Create the Gradio app
51
+ iface = gr.Interface(
52
+ fn=predict_performance,
53
+ inputs=[
54
+ gr.Slider(minimum=2024, maximum=2025, step=1, label="Year",info="The forecasted Year"),
55
+ gr.Slider(minimum=10000, maximum=45000, step=500, label="Instagram_Advertising", info="How much do you spend on Instagram ads Yearly($)?"),
56
+ gr.Slider(minimum=10000, maximum=75000, step=500, label="Facebook_Advertising", info="How much do you spend on Facebook ads Yearly($)?"),
57
+ gr.Slider(minimum=20000, maximum=100000, step=500, label="Event_Expenses", info="What’s your typical budget for events($)?"),
58
+ gr.Slider(minimum=5000, maximum=45000, step=500, label="Internet_Expenses", info="How much do you spend on internet Yearly($)?")
59
+ ],
60
+ outputs=gr.HTML(), # Specify the output as HTML
61
+ title="Student Admission Forecast",
62
+ description="Forecast of chances of student admission based on marketing expenditures"
63
+ )
64
+
65
+ # Run the app
66
+ if __name__ == "__main__":
67
+ iface.launch(share=True)