devendergarg14's picture
Update app.py
1e867de verified
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from gradio_client import Client, handle_file
from PIL import Image
import requests
from io import BytesIO
import cv2
def get_segmentation_mask(image_url):
client = Client("facebook/sapiens-seg")
result = client.predict(image=handle_file(image_url), model_name="1b", api_name="/process_image")
return np.load(result[1]) # Result[1] contains the .npy mask
def process_image(image, categories_to_hide):
# Convert uploaded image to a PIL Image
image = Image.open(image.name).convert("RGBA")
# Save temporarily and get the segmentation mask
image.save("temp_image.png")
mask_data = get_segmentation_mask("temp_image.png")
# Define grouped categories
grouped_mapping = {
"Background": [0],
"Clothes": [1, 12, 22, 8, 9, 17, 18], # Includes Shoes, Socks, Slippers
"Face": [2, 23, 24, 25, 26, 27], # Face, Neck, Lips, Teeth, Tongue
"Hair": [3], # Hair
"Skin": [4, 5, 6, 7, 10, 11, 13, 14, 15, 16, 19, 20, 21] # Hands, Feet, Arms, Legs, Torso
}
# Convert image to numpy array (RGBA)
image_array = np.array(image, dtype=np.uint8)
# Create an empty transparent image
transparent_image = np.zeros_like(image_array, dtype=np.uint8)
# Create a binary mask for selected categories
mask_combined = np.zeros_like(mask_data, dtype=bool)
for category in categories_to_hide:
for idx in grouped_mapping.get(category, []):
mask_combined |= (mask_data == idx)
# Expand clothing boundaries if clothes are in `categories_to_hide`
if "Clothes" in categories_to_hide:
clothing_mask = np.isin(mask_data, grouped_mapping["Clothes"]).astype(np.uint8)
# Determine kernel size (2% of the smaller image dimension)
height, width = clothing_mask.shape
kernel_size = max(20, int(0.02 * min(height, width))) # Ensure at least 1 pixel
kernel = np.ones((kernel_size, kernel_size), np.uint8)
# **Step 1: Fill gaps using Morphological Closing (Dilation + Erosion)**
closed_clothing_mask = cv2.morphologyEx(clothing_mask, cv2.MORPH_CLOSE, kernel, iterations=1)
# **Step 2: Expand clothing boundary using Dilation**
dilated_clothing_mask = cv2.dilate(closed_clothing_mask, kernel, iterations=1)
# Update mask_combined with the expanded clothing mask
mask_combined |= (dilated_clothing_mask == 1)
# Apply the mask (preserve only selected regions)
transparent_image[mask_combined] = image_array[mask_combined]
# Convert back to PIL Image
result_image = Image.fromarray(transparent_image, mode="RGBA")
return result_image
# Define Gradio Interface
demo = gr.Interface(
fn=process_image,
inputs=[
gr.File(label="Upload an Image"),
gr.CheckboxGroup([
"Background", "Clothes", "Face", "Hair", "Skin"
], label="Select Categories to Preserve")
],
outputs=gr.Image(label="Masked Image", type="pil"),
title="Segmentation Mask Editor",
description="Upload an image, generate a segmentation mask, and select categories to preserve while making the rest transparent."
)
if __name__ == "__main__":
demo.launch()