Spaces:
Runtime error
Runtime error
File size: 3,288 Bytes
2682f23 59f7528 2682f23 e1512bf 0bacb15 2682f23 e1512bf 2682f23 e1512bf 2682f23 e1512bf 0bacb15 e1512bf 2682f23 e1512bf 2682f23 e1512bf 2682f23 e1512bf 2682f23 e1512bf c8d523b 8c65bc9 2682f23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import gradio as gr
from langchain import PromptTemplate
# from langchain.chat_models import ChatOpenAI
from langchain_community.chat_models import ChatOpenAI
from langchain.chains import LLMChain
from langchain_community.retrievers import WikipediaRetriever
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from langchain_google_genai import ChatGoogleGenerativeAI
import os
def song_insight(song, artist):
# input
query_input = f"{song.title()} by {artist.title()}"
# get info about the song from wikipedia using wikipedia retriever
retriever = WikipediaRetriever()
docs = retriever.get_relevant_documents(query=query_input)
# LLM model
# llm = ChatOpenAI(openai_api_key=os.environ['OPENAI_API_KEY'], model_name="gpt-3.5-turbo", temperature=0)
llm = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=os.environ['GOOGLE_API_KEY'])
# Emotion Classifier Model
tokenizer = AutoTokenizer.from_pretrained("yangswei/emotion_text_classification")
emotion_model = AutoModelForSequenceClassification.from_pretrained("yangswei/emotion_text_classification")
# get the song meaning
template_song_meaning = """
{artist} has released a song called {song}.
{content}
based on the the content above what does the song {song} by {artist} tell us about? give me a long explanations
"""
prompt_template_song_meaning = PromptTemplate(input_variables=["artist", "song", "content"],
template=template_song_meaning)
chain_song_meaning = LLMChain(llm=llm, prompt=prompt_template_song_meaning)
results_song_meaning = chain_song_meaning.run(artist=artist.title(), song=song.title(),
content=docs[0].page_content)
# get the song theme
template_song_theme = """
{artist} has released a song called {song}.
{content}
based on the the content above what themes does the lyrics have?
"""
prompt_template_song_theme = PromptTemplate(input_variables=["artist", "song", "content"],
template=template_song_theme)
chain_song_theme = LLMChain(llm=llm, prompt=prompt_template_song_theme)
text_song_theme = chain_song_theme.run(artist=artist.title(), song=song.title(), content=docs[0].page_content)
inputs_song_theme = tokenizer(text_song_theme, return_tensors="pt")
output_song_theme_proba = emotion_model(**inputs_song_theme).logits.softmax(1)
labels = emotion_model.config.id2label
confidences = {labels[i]: output_song_theme_proba[0][i].item() for i in range(len(labels))}
return results_song_meaning, confidences
with gr.Blocks(theme=gr.themes.Soft()) as demo:
song = gr.Textbox(label="Song")
artist = gr.Textbox(label="Artist")
output_song_meaning = gr.Textbox(label="Meaning")
output_song_theme = gr.Label(num_top_classes=6, label="Theme")
gr.Interface(fn=song_insight, inputs=[song, artist], outputs=[output_song_meaning, output_song_theme])
example = gr.Examples([['Life Goes On', 'BTS'], ['Here Comes The Sun', 'The Beatles'],
['Bedtime Stories', 'Jay Chou'], ['Loser', 'BIGBANG']], [song, artist])
demo.launch()
|