Spaces:
Runtime error
Runtime error
citradiani
commited on
Commit
•
74e678c
1
Parent(s):
7bdbf23
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PIL
|
2 |
+
from torchvision import datasets, transforms, models
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import torch.nn as nn
|
6 |
+
import pandas as pd
|
7 |
+
import numpy as np
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
class_names = ['apple_pie',
|
11 |
+
'bibimbap',
|
12 |
+
'cannoli',
|
13 |
+
'edamame',
|
14 |
+
'falafel',
|
15 |
+
'french_toast',
|
16 |
+
'ramen',
|
17 |
+
'sushi',
|
18 |
+
'tiramisu']
|
19 |
+
|
20 |
+
def pil_loader(path):
|
21 |
+
with open(path, 'rb') as f:
|
22 |
+
img = Image.open(f)
|
23 |
+
return img.convert('RGB')
|
24 |
+
|
25 |
+
def predict(img_path):
|
26 |
+
# Load and preprocess the image
|
27 |
+
# image = pil_loader(img_path)
|
28 |
+
# Convert Gradio image input to a NumPy array
|
29 |
+
img_array = img_path.astype(np.uint8)
|
30 |
+
|
31 |
+
# # Convert NumPy array to PIL Image
|
32 |
+
image = Image.fromarray(img_array)
|
33 |
+
|
34 |
+
test_transforms = transforms.Compose([
|
35 |
+
transforms.Resize(256),
|
36 |
+
transforms.CenterCrop(224),
|
37 |
+
transforms.ToTensor(),
|
38 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
39 |
+
])
|
40 |
+
|
41 |
+
# Apply transformations
|
42 |
+
image = test_transforms(image)
|
43 |
+
|
44 |
+
inf_model = models.resnet18(pretrained=False)
|
45 |
+
num_ftrs = inf_model.fc.in_features
|
46 |
+
# Here the size of each output sample is set to 2.
|
47 |
+
# Alternatively, it can be generalized to nn.Linear(num_ftrs, len(class_names)).
|
48 |
+
inf_model.fc = nn.Linear(num_ftrs, len(class_names))
|
49 |
+
|
50 |
+
# model_1 = model_1.to(device)
|
51 |
+
inf_model.to(torch.device('cpu'))
|
52 |
+
inf_model.load_state_dict(torch.load('./resnet18_tinyfood_classifier.pth', map_location='cpu'))
|
53 |
+
|
54 |
+
# Perform inference
|
55 |
+
with torch.no_grad():
|
56 |
+
inf_model.eval()
|
57 |
+
out = inf_model(image.unsqueeze(0)) # Add batch dimension
|
58 |
+
|
59 |
+
# Get the predicted class and confidence
|
60 |
+
_, preds = torch.max(out, 1)
|
61 |
+
idx = preds.cpu().numpy()[0]
|
62 |
+
pred_class = class_names[idx]
|
63 |
+
|
64 |
+
# Assuming `out` is logits, you may need to apply softmax instead of sigmoid
|
65 |
+
probabilities = torch.softmax(out, dim=1) # Apply softmax to get probabilities
|
66 |
+
confidence = probabilities[0, idx].item() * 100 # Get confidence for the predicted class
|
67 |
+
|
68 |
+
nutrition_data_path = './food-data.csv'
|
69 |
+
# Membaca file CSV
|
70 |
+
df = pd.read_csv(nutrition_data_path)
|
71 |
+
|
72 |
+
# Mencocokkan prediksi dengan data CSV
|
73 |
+
if pred_class.capitalize() in df["Makanan"].values:
|
74 |
+
row = df.loc[df["Makanan"] == pred_class.capitalize()]
|
75 |
+
|
76 |
+
# Mengambil informasi gizi
|
77 |
+
calories = row["Kalori"].values[0]
|
78 |
+
protein = row["Protein"].values[0]
|
79 |
+
fat = row["Lemak"].values[0]
|
80 |
+
carbs = row["Karbohidrat"].values[0]
|
81 |
+
fiber = row["Serat"].values[0]
|
82 |
+
sugar = row["Gula"].values[0]
|
83 |
+
price = row["Harga (Rp)"].values[0]
|
84 |
+
|
85 |
+
return pred_class, calories, protein, fat, carbs, fiber, sugar, price
|
86 |
+
else:
|
87 |
+
nutrition_info = None
|
88 |
+
return 'Food not found', 0, 0, 0, 0, 0, 0
|
89 |
+
|
90 |
+
# return pred_class, confidence
|
91 |
+
|
92 |
+
|
93 |
+
# img_path = '/content/drive/MyDrive/Assignment-Citra-SkillacademyAI/bibimbap.jpeg'
|
94 |
+
# print(predict(img_path))
|
95 |
+
|
96 |
+
interface = gr.Interface(
|
97 |
+
predict,
|
98 |
+
inputs="image",
|
99 |
+
title="Selera Cafe App",
|
100 |
+
description="This App will provide the information of your food choice in Selera Cafe. The menu includes: Apple Pie, Bibimbap, Cannoli, Edamame, Falafel, French Toast, Ramen, Sushi, Tiramisu. Enjoy your food!",
|
101 |
+
|
102 |
+
outputs=[
|
103 |
+
gr.Text(label="Food Label"),
|
104 |
+
gr.Number(label="Calories"),
|
105 |
+
gr.Number(label="Protein"),
|
106 |
+
gr.Number(label="Fat"),
|
107 |
+
gr.Number(label="Carbs"),
|
108 |
+
gr.Number(label="Fiber"),
|
109 |
+
gr.Number(label="Sugar"),
|
110 |
+
gr.Number(label="Price")
|
111 |
+
],
|
112 |
+
examples = [
|
113 |
+
'/content/drive/MyDrive/Assignment-Citra-SkillacademyAI/bibimbap.jpeg',
|
114 |
+
'/content/drive/MyDrive/Assignment-Citra-SkillacademyAI/food-101-tiny/apple-pie.jpeg',
|
115 |
+
'/content/drive/MyDrive/Assignment-Citra-SkillacademyAI/food-101-tiny/cannoli.jpeg'
|
116 |
+
])
|
117 |
+
interface.launch()
|