Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,15 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import json
|
4 |
import re
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
9 |
1. Analyze the task and break it down into specific sub-tasks
|
10 |
2. Create a structured plan with numbered steps
|
11 |
3. Include any relevant considerations or potential challenges
|
@@ -26,103 +30,125 @@ SYSTEM_PROMPT = """You are an AI agent planner that helps break down tasks into
|
|
26 |
|
27 |
Keep your responses focused and practical."""
|
28 |
|
29 |
-
def parse_json_response(response_text):
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
return
|
37 |
-
|
38 |
-
|
39 |
-
return None
|
40 |
|
41 |
-
def format_plan(plan_json):
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
temperature=0.7,
|
77 |
-
top_p=0.95,
|
78 |
-
):
|
79 |
-
messages = [{"role": "system", "content": system_message}]
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
top_p=top_p,
|
96 |
-
):
|
97 |
-
token = message.choices[0].delta.content
|
98 |
-
response += token
|
99 |
-
|
100 |
-
# Try to parse and format JSON as it comes in
|
101 |
-
plan_json = parse_json_response(response)
|
102 |
-
if plan_json:
|
103 |
-
formatted_response = format_plan(plan_json)
|
104 |
-
yield formatted_response
|
105 |
-
else:
|
106 |
-
yield response
|
107 |
|
108 |
-
demo
|
109 |
-
respond,
|
110 |
-
additional_inputs=[
|
111 |
-
gr.Textbox(value=SYSTEM_PROMPT, label="System message", lines=5),
|
112 |
-
gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Max new tokens"),
|
113 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
114 |
-
gr.Slider(
|
115 |
-
minimum=0.1,
|
116 |
-
maximum=1.0,
|
117 |
-
value=0.95,
|
118 |
-
step=0.05,
|
119 |
-
label="Top-p (nucleus sampling)",
|
120 |
-
),
|
121 |
-
],
|
122 |
-
title="AI Agent Planner",
|
123 |
-
description="I help break down tasks into clear, actionable steps. Describe your task, and I'll create a detailed plan.",
|
124 |
-
theme=gr.themes.Soft(),
|
125 |
-
)
|
126 |
|
127 |
if __name__ == "__main__":
|
|
|
128 |
demo.launch()
|
|
|
1 |
+
import concurrent.futures
|
2 |
import gradio as gr
|
3 |
from huggingface_hub import InferenceClient
|
4 |
import json
|
5 |
import re
|
6 |
+
import traceback
|
7 |
|
8 |
+
class AgentPlanner:
|
9 |
+
def __init__(self):
|
10 |
+
self.client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
11 |
+
self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=1)
|
12 |
+
self.system_prompt = """You are an AI agent planner that helps break down tasks into clear, actionable steps. For each task, you will:
|
13 |
1. Analyze the task and break it down into specific sub-tasks
|
14 |
2. Create a structured plan with numbered steps
|
15 |
3. Include any relevant considerations or potential challenges
|
|
|
30 |
|
31 |
Keep your responses focused and practical."""
|
32 |
|
33 |
+
def parse_json_response(self, response_text):
|
34 |
+
"""Extract JSON from the response text."""
|
35 |
+
try:
|
36 |
+
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
|
37 |
+
if json_match:
|
38 |
+
json_str = json_match.group()
|
39 |
+
return json.loads(json_str)
|
40 |
+
return None
|
41 |
+
except json.JSONDecodeError:
|
42 |
+
return None
|
|
|
43 |
|
44 |
+
def format_plan(self, plan_json):
|
45 |
+
"""Format the JSON plan into a readable markdown string."""
|
46 |
+
if not plan_json:
|
47 |
+
return "Error: Could not parse the plan. Please try again."
|
48 |
+
|
49 |
+
output = []
|
50 |
+
output.append("# Task Analysis")
|
51 |
+
output.append(plan_json.get("task_analysis", ""))
|
52 |
+
output.append("\n## Detailed Steps")
|
53 |
+
|
54 |
+
for step in plan_json.get("steps", []):
|
55 |
+
output.append(f"\n### Step {step.get('step_number')}: {step.get('description')}")
|
56 |
+
output.append(f"- Estimated time: {step.get('estimated_time')}")
|
57 |
+
if step.get('considerations'):
|
58 |
+
output.append("\nConsiderations:")
|
59 |
+
for consideration in step['considerations']:
|
60 |
+
output.append(f"- {consideration}")
|
61 |
+
|
62 |
+
if plan_json.get("potential_challenges"):
|
63 |
+
output.append("\n## Potential Challenges")
|
64 |
+
for challenge in plan_json["potential_challenges"]:
|
65 |
+
output.append(f"- {challenge}")
|
66 |
+
|
67 |
+
if plan_json.get("resources_needed"):
|
68 |
+
output.append("\n## Required Resources")
|
69 |
+
for resource in plan_json["resources_needed"]:
|
70 |
+
output.append(f"- {resource}")
|
71 |
+
|
72 |
+
return "\n".join(output)
|
73 |
+
|
74 |
+
def generate_plan(self, task, max_tokens=1024, temperature=0.7, top_p=0.95):
|
75 |
+
try:
|
76 |
+
messages = [
|
77 |
+
{"role": "system", "content": self.system_prompt},
|
78 |
+
{"role": "user", "content": task}
|
79 |
+
]
|
80 |
+
|
81 |
+
response = ""
|
82 |
+
for message in self.client.chat_completion(
|
83 |
+
messages,
|
84 |
+
max_tokens=max_tokens,
|
85 |
+
stream=True,
|
86 |
+
temperature=temperature,
|
87 |
+
top_p=top_p,
|
88 |
+
):
|
89 |
+
token = message.choices[0].delta.content
|
90 |
+
response += token
|
91 |
+
|
92 |
+
# Try to parse and format JSON as it comes in
|
93 |
+
plan_json = self.parse_json_response(response)
|
94 |
+
if plan_json:
|
95 |
+
formatted_response = self.format_plan(plan_json)
|
96 |
+
yield formatted_response
|
97 |
+
else:
|
98 |
+
yield response
|
99 |
+
except Exception as e:
|
100 |
+
yield f"Error generating plan: {str(e)}\n{traceback.format_exc()}"
|
101 |
+
|
102 |
+
def __del__(self):
|
103 |
+
self.executor.shutdown(wait=False)
|
104 |
+
|
105 |
+
def create_interface():
|
106 |
+
planner = AgentPlanner()
|
107 |
|
108 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
109 |
+
gr.Markdown("# AI Agent Planner")
|
110 |
+
gr.Markdown("Get organized, structured plans for any task")
|
111 |
|
112 |
+
task_input = gr.Textbox(
|
113 |
+
label="Task Description",
|
114 |
+
placeholder="Describe the task you need help planning...",
|
115 |
+
lines=3
|
116 |
+
)
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
with gr.Row():
|
119 |
+
max_tokens = gr.Slider(
|
120 |
+
minimum=1,
|
121 |
+
maximum=2048,
|
122 |
+
value=1024,
|
123 |
+
step=1,
|
124 |
+
label="Max Tokens"
|
125 |
+
)
|
126 |
+
temperature = gr.Slider(
|
127 |
+
minimum=0.1,
|
128 |
+
maximum=4.0,
|
129 |
+
value=0.7,
|
130 |
+
step=0.1,
|
131 |
+
label="Temperature"
|
132 |
+
)
|
133 |
+
top_p = gr.Slider(
|
134 |
+
minimum=0.1,
|
135 |
+
maximum=1.0,
|
136 |
+
value=0.95,
|
137 |
+
step=0.05,
|
138 |
+
label="Top-p"
|
139 |
+
)
|
140 |
|
141 |
+
output = gr.Markdown(label="Generated Plan")
|
142 |
|
143 |
+
generate_btn = gr.Button("Generate Plan", variant="primary")
|
144 |
+
generate_btn.click(
|
145 |
+
planner.generate_plan,
|
146 |
+
inputs=[task_input, max_tokens, temperature, top_p],
|
147 |
+
outputs=output
|
148 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
+
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
if __name__ == "__main__":
|
153 |
+
demo = create_interface()
|
154 |
demo.launch()
|