Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,92 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
3 |
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
):
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
for
|
21 |
-
if
|
22 |
-
messages.append({"role": "user", "content":
|
23 |
-
if
|
24 |
-
messages.append({"role": "assistant", "content":
|
25 |
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
response = ""
|
29 |
-
|
30 |
for message in client.chat_completion(
|
31 |
messages,
|
32 |
max_tokens=max_tokens,
|
@@ -35,19 +95,21 @@ def respond(
|
|
35 |
top_p=top_p,
|
36 |
):
|
37 |
token = message.choices[0].delta.content
|
38 |
-
|
39 |
response += token
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
49 |
-
gr.Textbox(value=
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=
|
51 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
gr.Slider(
|
53 |
minimum=0.1,
|
@@ -57,8 +119,10 @@ demo = gr.ChatInterface(
|
|
57 |
label="Top-p (nucleus sampling)",
|
58 |
),
|
59 |
],
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
import json
|
4 |
+
import re
|
5 |
|
|
|
|
|
|
|
6 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
7 |
|
8 |
+
SYSTEM_PROMPT = """You are an AI agent planner that helps break down tasks into clear, actionable steps. For each task, you will:
|
9 |
+
1. Analyze the task and break it down into specific sub-tasks
|
10 |
+
2. Create a structured plan with numbered steps
|
11 |
+
3. Include any relevant considerations or potential challenges
|
12 |
+
4. Format the response as a JSON with the following structure:
|
13 |
+
{
|
14 |
+
"task_analysis": "Brief analysis of the main task",
|
15 |
+
"steps": [
|
16 |
+
{
|
17 |
+
"step_number": 1,
|
18 |
+
"description": "Step description",
|
19 |
+
"estimated_time": "Time estimate",
|
20 |
+
"considerations": ["List of considerations"]
|
21 |
+
}
|
22 |
+
],
|
23 |
+
"potential_challenges": ["List of potential challenges"],
|
24 |
+
"resources_needed": ["List of required resources"]
|
25 |
+
}
|
26 |
+
|
27 |
+
Keep your responses focused and practical."""
|
28 |
+
|
29 |
+
def parse_json_response(response_text):
|
30 |
+
"""Extract JSON from the response text."""
|
31 |
+
try:
|
32 |
+
# Find JSON pattern in the text
|
33 |
+
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
|
34 |
+
if json_match:
|
35 |
+
json_str = json_match.group()
|
36 |
+
return json.loads(json_str)
|
37 |
+
return None
|
38 |
+
except json.JSONDecodeError:
|
39 |
+
return None
|
40 |
+
|
41 |
+
def format_plan(plan_json):
|
42 |
+
"""Format the JSON plan into a readable markdown string."""
|
43 |
+
if not plan_json:
|
44 |
+
return "Error: Could not parse the plan. Please try again."
|
45 |
+
|
46 |
+
output = []
|
47 |
+
output.append("# Task Analysis")
|
48 |
+
output.append(plan_json.get("task_analysis", ""))
|
49 |
+
output.append("\n## Detailed Steps")
|
50 |
+
|
51 |
+
for step in plan_json.get("steps", []):
|
52 |
+
output.append(f"\n### Step {step.get('step_number')}: {step.get('description')}")
|
53 |
+
output.append(f"- Estimated time: {step.get('estimated_time')}")
|
54 |
+
if step.get('considerations'):
|
55 |
+
output.append("\nConsiderations:")
|
56 |
+
for consideration in step['considerations']:
|
57 |
+
output.append(f"- {consideration}")
|
58 |
+
|
59 |
+
if plan_json.get("potential_challenges"):
|
60 |
+
output.append("\n## Potential Challenges")
|
61 |
+
for challenge in plan_json["potential_challenges"]:
|
62 |
+
output.append(f"- {challenge}")
|
63 |
+
|
64 |
+
if plan_json.get("resources_needed"):
|
65 |
+
output.append("\n## Required Resources")
|
66 |
+
for resource in plan_json["resources_needed"]:
|
67 |
+
output.append(f"- {resource}")
|
68 |
+
|
69 |
+
return "\n".join(output)
|
70 |
|
71 |
def respond(
|
72 |
message,
|
73 |
history: list[tuple[str, str]],
|
74 |
+
system_message=SYSTEM_PROMPT,
|
75 |
+
max_tokens=1024,
|
76 |
+
temperature=0.7,
|
77 |
+
top_p=0.95,
|
78 |
):
|
79 |
messages = [{"role": "system", "content": system_message}]
|
80 |
|
81 |
+
for user_msg, assistant_msg in history:
|
82 |
+
if user_msg:
|
83 |
+
messages.append({"role": "user", "content": user_msg})
|
84 |
+
if assistant_msg:
|
85 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
86 |
|
87 |
messages.append({"role": "user", "content": message})
|
88 |
|
89 |
response = ""
|
|
|
90 |
for message in client.chat_completion(
|
91 |
messages,
|
92 |
max_tokens=max_tokens,
|
|
|
95 |
top_p=top_p,
|
96 |
):
|
97 |
token = message.choices[0].delta.content
|
|
|
98 |
response += token
|
99 |
+
|
100 |
+
# Try to parse and format JSON as it comes in
|
101 |
+
plan_json = parse_json_response(response)
|
102 |
+
if plan_json:
|
103 |
+
formatted_response = format_plan(plan_json)
|
104 |
+
yield formatted_response
|
105 |
+
else:
|
106 |
+
yield response
|
107 |
|
|
|
|
|
|
|
|
|
108 |
demo = gr.ChatInterface(
|
109 |
respond,
|
110 |
additional_inputs=[
|
111 |
+
gr.Textbox(value=SYSTEM_PROMPT, label="System message", lines=5),
|
112 |
+
gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Max new tokens"),
|
113 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
114 |
gr.Slider(
|
115 |
minimum=0.1,
|
|
|
119 |
label="Top-p (nucleus sampling)",
|
120 |
),
|
121 |
],
|
122 |
+
title="AI Agent Planner",
|
123 |
+
description="I help break down tasks into clear, actionable steps. Describe your task, and I'll create a detailed plan.",
|
124 |
+
theme=gr.themes.Soft(),
|
125 |
)
|
126 |
|
|
|
127 |
if __name__ == "__main__":
|
128 |
demo.launch()
|