Spaces:
Build error
Build error
File size: 5,824 Bytes
70bad37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
{
"cells": [
{
"cell_type": "markdown",
"id": "6a151ade-7d86-4a2e-bfe7-462089f4e04c",
"metadata": {},
"source": [
"# Approach\n",
"There are a number of aspects of choosing a vector db that might be unique to your situation. You should think through your HW, utilization, latency requirements, scale, etc before choosing. \n",
"\n",
"Im targeting a demo (low utilization, latency can be relaxed) that will live on a huggingface space. I have a small scale that could even fit in memory. I like [Qdrant](https://qdrant.tech) for this. "
]
},
{
"cell_type": "markdown",
"id": "b1b28232-b65d-41ce-88de-fd70b93a528d",
"metadata": {},
"source": [
"# Imports"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "88408486-566a-4791-8ef2-5ee3e6941156",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from IPython.core.interactiveshell import InteractiveShell\n",
"InteractiveShell.ast_node_interactivity = 'all'"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "abb5186b-ee67-4e1e-882d-3d8d5b4575d4",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from pathlib import Path\n",
"import pickle\n",
"\n",
"from tqdm.notebook import tqdm\n",
"from haystack.schema import Document\n",
"from qdrant_haystack import QdrantDocumentStore"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "c4b82ea2-8b30-4c2e-99f0-9a30f2f1bfb7",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/home/ec2-user/RAGDemo\n"
]
}
],
"source": [
"proj_dir = Path.cwd().parent\n",
"print(proj_dir)"
]
},
{
"cell_type": "markdown",
"id": "76119e74-f601-436d-a253-63c5a19d1c83",
"metadata": {},
"source": [
"# Config"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f6f74545-54a7-4f41-9f02-96964e1417f0",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"file_in = proj_dir / 'data/processed/simple_wiki_embeddings.pkl'"
]
},
{
"cell_type": "markdown",
"id": "d2dd0df0-4274-45b3-9ee5-0205494e4d75",
"metadata": {
"tags": []
},
"source": [
"# Setup\n",
"Read in our list of dictionaries. This is the upper end for the machine Im using. This takes ~10GB of RAM. We could easily do this in batches of ~100k and be fine in most machines. "
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "3c08e039-3686-4eca-9f87-7c469e3f19bc",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 11.6 s, sys: 2.25 s, total: 13.9 s\n",
"Wall time: 18.1 s\n"
]
}
],
"source": [
"%%time\n",
"with open(file_in, 'rb') as handle:\n",
" documents = pickle.load(handle)"
]
},
{
"cell_type": "markdown",
"id": "98aec715-8d97-439e-99c0-0eff63df386b",
"metadata": {},
"source": [
"Convert the dictionaries to `Documents`"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4821e3c1-697d-4b69-bae3-300168755df9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"documents = [Document.from_dict(d) for d in documents]"
]
},
{
"cell_type": "markdown",
"id": "676f644c-fb09-4d17-89ba-30c92aad8777",
"metadata": {},
"source": [
"Instantiate our `DocumentStore`. Note that Im saving this to disk, this is for portability which is good considering I want to move from this ec2 instance into a Hugging Face Space. \n",
"\n",
"Note that if you are doing this at scale, you should use a proper instance and not saving to file. You should also take a [measured ingestion](https://qdrant.tech/documentation/tutorials/bulk-upload/) approach instead of using a convenient loader. "
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e51b6e19-3be8-4cb0-8b65-9d6f6121f660",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"document_store = QdrantDocumentStore(\n",
" path=str(proj_dir/'Qdrant'),\n",
" index=\"RAGDemo\",\n",
" embedding_dim=768,\n",
" recreate_index=True,\n",
" hnsw_config={\"m\": 16, \"ef_construct\": 64} # Optional\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "55fbcd5d-922c-4e93-a37a-974ba84464ac",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"270000it [28:43, 156.68it/s] "
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 13min 23s, sys: 48.6 s, total: 14min 12s\n",
"Wall time: 28min 43s\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"%%time\n",
"document_store.write_documents(documents, batch_size=5_000)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9a073815-0191-48f7-890f-a4e4ecc0f9f1",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|