kadirnar commited on
Commit
4551826
·
1 Parent(s): 4792ad8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -41
app.py CHANGED
@@ -1,11 +1,12 @@
 
 
 
1
  import gradio as gr
2
  import numpy as np
3
- from PIL import Image
4
  import random
5
- import matplotlib.pyplot as plt
6
  import torch
7
- from transformers import SegformerForSemanticSegmentation
8
- from transformers import SegformerImageProcessor
9
 
10
  image_list = [
11
  "data/1.png",
@@ -14,6 +15,8 @@ image_list = [
14
  "data/4.png",
15
  ]
16
 
 
 
17
  def visualize_instance_seg_mask(mask):
18
  # Initialize image with zeros with the image resolution
19
  # of the segmentation mask and 3 channels
@@ -53,35 +56,9 @@ def Segformer_Segmentation(image_path, model_id):
53
  result = proccessor.post_process_semantic_segmentation(outputs)[0]
54
  result = np.array(result)
55
  result = visualize_instance_seg_mask(result)
56
- plt.figure(figsize=(10, 10))
57
- for plot_index in range(2):
58
- if plot_index == 0:
59
- plot_image = test_image
60
- title = "Original"
61
- else:
62
- plot_image = result
63
- title = "Segmentation"
64
-
65
- plt.subplot(1, 2, plot_index+1)
66
- plt.imshow(plot_image)
67
- plt.title(title)
68
- plt.axis("off")
69
- plt.savefig(output_save)
70
-
71
- return output_save
72
-
73
- inputs = [
74
- gr.inputs.Image(type="filepath", label="Input Image"),
75
- gr.inputs.Dropdown(
76
- choices=[
77
- "deprem-ml/deprem_satellite_semantic_whu"
78
- ],
79
- label="Model ID",
80
- default="deprem-ml/deprem_satellite_semantic_whu",
81
- )
82
- ]
83
 
84
- outputs = gr.Image(type="filepath", label="Segmentation")
85
 
86
  examples = [[image_list[0], "deprem-ml/deprem_satellite_semantic_whu"],
87
  [image_list[1], "deprem-ml/deprem_satellite_semantic_whu"],
@@ -90,13 +67,24 @@ examples = [[image_list[0], "deprem-ml/deprem_satellite_semantic_whu"],
90
 
91
  title = "Deprem ML - Segformer Semantic Segmentation"
92
 
93
- demo_app = gr.Interface(
94
- Segformer_Segmentation,
95
- inputs,
96
- outputs,
97
- examples=examples,
98
- title=title,
99
- cache_examples=True
100
- )
 
 
 
 
 
 
 
 
 
 
 
101
 
102
- demo_app.launch(debug=True, enable_queue=True)
 
1
+ from transformers import SegformerForSemanticSegmentation
2
+ from transformers import SegformerImageProcessor
3
+ from PIL import Image
4
  import gradio as gr
5
  import numpy as np
 
6
  import random
7
+ import cv2
8
  import torch
9
+
 
10
 
11
  image_list = [
12
  "data/1.png",
 
15
  "data/4.png",
16
  ]
17
 
18
+ model_path = ['deprem-ml/deprem_satellite_semantic_whu']
19
+
20
  def visualize_instance_seg_mask(mask):
21
  # Initialize image with zeros with the image resolution
22
  # of the segmentation mask and 3 channels
 
56
  result = proccessor.post_process_semantic_segmentation(outputs)[0]
57
  result = np.array(result)
58
  result = visualize_instance_seg_mask(result)
59
+ cv2.imwrite(output_save, result*255)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
+ return image_path, output_save
62
 
63
  examples = [[image_list[0], "deprem-ml/deprem_satellite_semantic_whu"],
64
  [image_list[1], "deprem-ml/deprem_satellite_semantic_whu"],
 
67
 
68
  title = "Deprem ML - Segformer Semantic Segmentation"
69
 
70
+ app = gr.Blocks()
71
+ with app:
72
+ gr.HTML("<h1 style='text-align: center'>{}</h1>".format(title))
73
+ with gr.Row():
74
+ with gr.Column():
75
+ gr.Markdown("Video")
76
+ input_video = gr.Image(type='filepath')
77
+ model_id = gr.Dropdown(value=model_path[0], choices=model_path)
78
+ input_video_button = gr.Button(value="Predict")
79
+
80
+ with gr.Column():
81
+ output_orijinal_image = gr.Image(type='filepath')
82
+
83
+ with gr.Column():
84
+ output_mask_image = gr.Image(type='filepath')
85
+
86
+
87
+ gr.Examples(examples, inputs=[input_video, model_id], outputs=[output_orijinal_image, output_mask_image], fn=Segformer_Segmentation, cache_examples=True)
88
+ input_video_button.click(Segformer_Segmentation, inputs=[input_video, model_id], outputs=[output_orijinal_image, output_mask_image])
89
 
90
+ app.launch()