Goodsea's picture
paddleocr
fc8c192
raw
history blame
36 kB
from __future__ import absolute_import, division, print_function, unicode_literals
import copy
import json
import numpy as np
from shapely.geometry import LineString, Point, Polygon
class ClsLabelEncode(object):
def __init__(self, label_list, **kwargs):
self.label_list = label_list
def __call__(self, data):
label = data["label"]
if label not in self.label_list:
return None
label = self.label_list.index(label)
data["label"] = label
return data
class DetLabelEncode(object):
def __init__(self, **kwargs):
pass
def __call__(self, data):
label = data["label"]
label = json.loads(label)
nBox = len(label)
boxes, txts, txt_tags = [], [], []
for bno in range(0, nBox):
box = label[bno]["points"]
txt = label[bno]["transcription"]
boxes.append(box)
txts.append(txt)
if txt in ["*", "###"]:
txt_tags.append(True)
else:
txt_tags.append(False)
if len(boxes) == 0:
return None
boxes = self.expand_points_num(boxes)
boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
data["polys"] = boxes
data["texts"] = txts
data["ignore_tags"] = txt_tags
return data
def order_points_clockwise(self, pts):
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def expand_points_num(self, boxes):
max_points_num = 0
for box in boxes:
if len(box) > max_points_num:
max_points_num = len(box)
ex_boxes = []
for box in boxes:
ex_box = box + [box[-1]] * (max_points_num - len(box))
ex_boxes.append(ex_box)
return ex_boxes
class BaseRecLabelEncode(object):
"""Convert between text-label and text-index"""
def __init__(self, max_text_length, character_dict_path=None, use_space_char=False):
self.max_text_len = max_text_length
self.beg_str = "sos"
self.end_str = "eos"
self.lower = False
if character_dict_path is None:
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
self.lower = True
else:
self.character_str = []
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
line = line.decode("utf-8").strip("\n").strip("\r\n")
self.character_str.append(line)
if use_space_char:
self.character_str.append(" ")
dict_character = list(self.character_str)
dict_character = self.add_special_char(dict_character)
self.dict = {}
for i, char in enumerate(dict_character):
self.dict[char] = i
self.character = dict_character
def add_special_char(self, dict_character):
return dict_character
def encode(self, text):
"""convert text-label into text-index.
input:
text: text labels of each image. [batch_size]
output:
text: concatenated text index for CTCLoss.
[sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
length: length of each text. [batch_size]
"""
if len(text) == 0 or len(text) > self.max_text_len:
return None
if self.lower:
text = text.lower()
text_list = []
for char in text:
if char not in self.dict:
continue
text_list.append(self.dict[char])
if len(text_list) == 0:
return None
return text_list
class NRTRLabelEncode(BaseRecLabelEncode):
"""Convert between text-label and text-index"""
def __init__(
self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs
):
super(NRTRLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char
)
def __call__(self, data):
text = data["label"]
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len - 1:
return None
data["length"] = np.array(len(text))
text.insert(0, 2)
text.append(3)
text = text + [0] * (self.max_text_len - len(text))
data["label"] = np.array(text)
return data
def add_special_char(self, dict_character):
dict_character = ["blank", "<unk>", "<s>", "</s>"] + dict_character
return dict_character
class CTCLabelEncode(BaseRecLabelEncode):
"""Convert between text-label and text-index"""
def __init__(
self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs
):
super(CTCLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char
)
def __call__(self, data):
text = data["label"]
text = self.encode(text)
if text is None:
return None
data["length"] = np.array(len(text))
text = text + [0] * (self.max_text_len - len(text))
data["label"] = np.array(text)
label = [0] * len(self.character)
for x in text:
label[x] += 1
data["label_ace"] = np.array(label)
return data
def add_special_char(self, dict_character):
dict_character = ["blank"] + dict_character
return dict_character
class E2ELabelEncodeTest(BaseRecLabelEncode):
def __init__(
self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs
):
super(E2ELabelEncodeTest, self).__init__(
max_text_length, character_dict_path, use_space_char
)
def __call__(self, data):
import json
padnum = len(self.dict)
label = data["label"]
label = json.loads(label)
nBox = len(label)
boxes, txts, txt_tags = [], [], []
for bno in range(0, nBox):
box = label[bno]["points"]
txt = label[bno]["transcription"]
boxes.append(box)
txts.append(txt)
if txt in ["*", "###"]:
txt_tags.append(True)
else:
txt_tags.append(False)
boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
data["polys"] = boxes
data["ignore_tags"] = txt_tags
temp_texts = []
for text in txts:
text = text.lower()
text = self.encode(text)
if text is None:
return None
text = text + [padnum] * (self.max_text_len - len(text)) # use 36 to pad
temp_texts.append(text)
data["texts"] = np.array(temp_texts)
return data
class E2ELabelEncodeTrain(object):
def __init__(self, **kwargs):
pass
def __call__(self, data):
import json
label = data["label"]
label = json.loads(label)
nBox = len(label)
boxes, txts, txt_tags = [], [], []
for bno in range(0, nBox):
box = label[bno]["points"]
txt = label[bno]["transcription"]
boxes.append(box)
txts.append(txt)
if txt in ["*", "###"]:
txt_tags.append(True)
else:
txt_tags.append(False)
boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
data["polys"] = boxes
data["texts"] = txts
data["ignore_tags"] = txt_tags
return data
class KieLabelEncode(object):
def __init__(self, character_dict_path, norm=10, directed=False, **kwargs):
super(KieLabelEncode, self).__init__()
self.dict = dict({"": 0})
with open(character_dict_path, "r", encoding="utf-8") as fr:
idx = 1
for line in fr:
char = line.strip()
self.dict[char] = idx
idx += 1
self.norm = norm
self.directed = directed
def compute_relation(self, boxes):
"""Compute relation between every two boxes."""
x1s, y1s = boxes[:, 0:1], boxes[:, 1:2]
x2s, y2s = boxes[:, 4:5], boxes[:, 5:6]
ws, hs = x2s - x1s + 1, np.maximum(y2s - y1s + 1, 1)
dxs = (x1s[:, 0][None] - x1s) / self.norm
dys = (y1s[:, 0][None] - y1s) / self.norm
xhhs, xwhs = hs[:, 0][None] / hs, ws[:, 0][None] / hs
whs = ws / hs + np.zeros_like(xhhs)
relations = np.stack([dxs, dys, whs, xhhs, xwhs], -1)
bboxes = np.concatenate([x1s, y1s, x2s, y2s], -1).astype(np.float32)
return relations, bboxes
def pad_text_indices(self, text_inds):
"""Pad text index to same length."""
max_len = 300
recoder_len = max([len(text_ind) for text_ind in text_inds])
padded_text_inds = -np.ones((len(text_inds), max_len), np.int32)
for idx, text_ind in enumerate(text_inds):
padded_text_inds[idx, : len(text_ind)] = np.array(text_ind)
return padded_text_inds, recoder_len
def list_to_numpy(self, ann_infos):
"""Convert bboxes, relations, texts and labels to ndarray."""
boxes, text_inds = ann_infos["points"], ann_infos["text_inds"]
boxes = np.array(boxes, np.int32)
relations, bboxes = self.compute_relation(boxes)
labels = ann_infos.get("labels", None)
if labels is not None:
labels = np.array(labels, np.int32)
edges = ann_infos.get("edges", None)
if edges is not None:
labels = labels[:, None]
edges = np.array(edges)
edges = (edges[:, None] == edges[None, :]).astype(np.int32)
if self.directed:
edges = (edges & labels == 1).astype(np.int32)
np.fill_diagonal(edges, -1)
labels = np.concatenate([labels, edges], -1)
padded_text_inds, recoder_len = self.pad_text_indices(text_inds)
max_num = 300
temp_bboxes = np.zeros([max_num, 4])
h, _ = bboxes.shape
temp_bboxes[:h, :] = bboxes
temp_relations = np.zeros([max_num, max_num, 5])
temp_relations[:h, :h, :] = relations
temp_padded_text_inds = np.zeros([max_num, max_num])
temp_padded_text_inds[:h, :] = padded_text_inds
temp_labels = np.zeros([max_num, max_num])
temp_labels[:h, : h + 1] = labels
tag = np.array([h, recoder_len])
return dict(
image=ann_infos["image"],
points=temp_bboxes,
relations=temp_relations,
texts=temp_padded_text_inds,
labels=temp_labels,
tag=tag,
)
def convert_canonical(self, points_x, points_y):
assert len(points_x) == 4
assert len(points_y) == 4
points = [Point(points_x[i], points_y[i]) for i in range(4)]
polygon = Polygon([(p.x, p.y) for p in points])
min_x, min_y, _, _ = polygon.bounds
points_to_lefttop = [
LineString([points[i], Point(min_x, min_y)]) for i in range(4)
]
distances = np.array([line.length for line in points_to_lefttop])
sort_dist_idx = np.argsort(distances)
lefttop_idx = sort_dist_idx[0]
if lefttop_idx == 0:
point_orders = [0, 1, 2, 3]
elif lefttop_idx == 1:
point_orders = [1, 2, 3, 0]
elif lefttop_idx == 2:
point_orders = [2, 3, 0, 1]
else:
point_orders = [3, 0, 1, 2]
sorted_points_x = [points_x[i] for i in point_orders]
sorted_points_y = [points_y[j] for j in point_orders]
return sorted_points_x, sorted_points_y
def sort_vertex(self, points_x, points_y):
assert len(points_x) == 4
assert len(points_y) == 4
x = np.array(points_x)
y = np.array(points_y)
center_x = np.sum(x) * 0.25
center_y = np.sum(y) * 0.25
x_arr = np.array(x - center_x)
y_arr = np.array(y - center_y)
angle = np.arctan2(y_arr, x_arr) * 180.0 / np.pi
sort_idx = np.argsort(angle)
sorted_points_x, sorted_points_y = [], []
for i in range(4):
sorted_points_x.append(points_x[sort_idx[i]])
sorted_points_y.append(points_y[sort_idx[i]])
return self.convert_canonical(sorted_points_x, sorted_points_y)
def __call__(self, data):
import json
label = data["label"]
annotations = json.loads(label)
boxes, texts, text_inds, labels, edges = [], [], [], [], []
for ann in annotations:
box = ann["points"]
x_list = [box[i][0] for i in range(4)]
y_list = [box[i][1] for i in range(4)]
sorted_x_list, sorted_y_list = self.sort_vertex(x_list, y_list)
sorted_box = []
for x, y in zip(sorted_x_list, sorted_y_list):
sorted_box.append(x)
sorted_box.append(y)
boxes.append(sorted_box)
text = ann["transcription"]
texts.append(ann["transcription"])
text_ind = [self.dict[c] for c in text if c in self.dict]
text_inds.append(text_ind)
if "label" in ann.keys():
labels.append(ann["label"])
elif "key_cls" in ann.keys():
labels.append(ann["key_cls"])
else:
raise ValueError(
"Cannot found 'key_cls' in ann.keys(), please check your training annotation."
)
edges.append(ann.get("edge", 0))
ann_infos = dict(
image=data["image"],
points=boxes,
texts=texts,
text_inds=text_inds,
edges=edges,
labels=labels,
)
return self.list_to_numpy(ann_infos)
class AttnLabelEncode(BaseRecLabelEncode):
"""Convert between text-label and text-index"""
def __init__(
self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs
):
super(AttnLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char
)
def add_special_char(self, dict_character):
self.beg_str = "sos"
self.end_str = "eos"
dict_character = [self.beg_str] + dict_character + [self.end_str]
return dict_character
def __call__(self, data):
text = data["label"]
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len:
return None
data["length"] = np.array(len(text))
text = (
[0]
+ text
+ [len(self.character) - 1]
+ [0] * (self.max_text_len - len(text) - 2)
)
data["label"] = np.array(text)
return data
def get_ignored_tokens(self):
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end):
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx" % beg_or_end
return idx
class SEEDLabelEncode(BaseRecLabelEncode):
"""Convert between text-label and text-index"""
def __init__(
self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs
):
super(SEEDLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char
)
def add_special_char(self, dict_character):
self.padding = "padding"
self.end_str = "eos"
self.unknown = "unknown"
dict_character = dict_character + [self.end_str, self.padding, self.unknown]
return dict_character
def __call__(self, data):
text = data["label"]
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len:
return None
data["length"] = np.array(len(text)) + 1 # conclude eos
text = (
text
+ [len(self.character) - 3]
+ [len(self.character) - 2] * (self.max_text_len - len(text) - 1)
)
data["label"] = np.array(text)
return data
class SRNLabelEncode(BaseRecLabelEncode):
"""Convert between text-label and text-index"""
def __init__(
self,
max_text_length=25,
character_dict_path=None,
use_space_char=False,
**kwargs
):
super(SRNLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char
)
def add_special_char(self, dict_character):
dict_character = dict_character + [self.beg_str, self.end_str]
return dict_character
def __call__(self, data):
text = data["label"]
text = self.encode(text)
char_num = len(self.character)
if text is None:
return None
if len(text) > self.max_text_len:
return None
data["length"] = np.array(len(text))
text = text + [char_num - 1] * (self.max_text_len - len(text))
data["label"] = np.array(text)
return data
def get_ignored_tokens(self):
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end):
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx" % beg_or_end
return idx
class TableLabelEncode(object):
"""Convert between text-label and text-index"""
def __init__(
self,
max_text_length,
max_elem_length,
max_cell_num,
character_dict_path,
span_weight=1.0,
**kwargs
):
self.max_text_length = max_text_length
self.max_elem_length = max_elem_length
self.max_cell_num = max_cell_num
list_character, list_elem = self.load_char_elem_dict(character_dict_path)
list_character = self.add_special_char(list_character)
list_elem = self.add_special_char(list_elem)
self.dict_character = {}
for i, char in enumerate(list_character):
self.dict_character[char] = i
self.dict_elem = {}
for i, elem in enumerate(list_elem):
self.dict_elem[elem] = i
self.span_weight = span_weight
def load_char_elem_dict(self, character_dict_path):
list_character = []
list_elem = []
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
substr = lines[0].decode("utf-8").strip("\r\n").split("\t")
character_num = int(substr[0])
elem_num = int(substr[1])
for cno in range(1, 1 + character_num):
character = lines[cno].decode("utf-8").strip("\r\n")
list_character.append(character)
for eno in range(1 + character_num, 1 + character_num + elem_num):
elem = lines[eno].decode("utf-8").strip("\r\n")
list_elem.append(elem)
return list_character, list_elem
def add_special_char(self, list_character):
self.beg_str = "sos"
self.end_str = "eos"
list_character = [self.beg_str] + list_character + [self.end_str]
return list_character
def get_span_idx_list(self):
span_idx_list = []
for elem in self.dict_elem:
if "span" in elem:
span_idx_list.append(self.dict_elem[elem])
return span_idx_list
def __call__(self, data):
cells = data["cells"]
structure = data["structure"]["tokens"]
structure = self.encode(structure, "elem")
if structure is None:
return None
elem_num = len(structure)
structure = [0] + structure + [len(self.dict_elem) - 1]
structure = structure + [0] * (self.max_elem_length + 2 - len(structure))
structure = np.array(structure)
data["structure"] = structure
elem_char_idx1 = self.dict_elem["<td>"]
elem_char_idx2 = self.dict_elem["<td"]
span_idx_list = self.get_span_idx_list()
td_idx_list = np.logical_or(
structure == elem_char_idx1, structure == elem_char_idx2
)
td_idx_list = np.where(td_idx_list)[0]
structure_mask = np.ones((self.max_elem_length + 2, 1), dtype=np.float32)
bbox_list = np.zeros((self.max_elem_length + 2, 4), dtype=np.float32)
bbox_list_mask = np.zeros((self.max_elem_length + 2, 1), dtype=np.float32)
img_height, img_width, img_ch = data["image"].shape
if len(span_idx_list) > 0:
span_weight = len(td_idx_list) * 1.0 / len(span_idx_list)
span_weight = min(max(span_weight, 1.0), self.span_weight)
for cno in range(len(cells)):
if "bbox" in cells[cno]:
bbox = cells[cno]["bbox"].copy()
bbox[0] = bbox[0] * 1.0 / img_width
bbox[1] = bbox[1] * 1.0 / img_height
bbox[2] = bbox[2] * 1.0 / img_width
bbox[3] = bbox[3] * 1.0 / img_height
td_idx = td_idx_list[cno]
bbox_list[td_idx] = bbox
bbox_list_mask[td_idx] = 1.0
cand_span_idx = td_idx + 1
if cand_span_idx < (self.max_elem_length + 2):
if structure[cand_span_idx] in span_idx_list:
structure_mask[cand_span_idx] = span_weight
data["bbox_list"] = bbox_list
data["bbox_list_mask"] = bbox_list_mask
data["structure_mask"] = structure_mask
char_beg_idx = self.get_beg_end_flag_idx("beg", "char")
char_end_idx = self.get_beg_end_flag_idx("end", "char")
elem_beg_idx = self.get_beg_end_flag_idx("beg", "elem")
elem_end_idx = self.get_beg_end_flag_idx("end", "elem")
data["sp_tokens"] = np.array(
[
char_beg_idx,
char_end_idx,
elem_beg_idx,
elem_end_idx,
elem_char_idx1,
elem_char_idx2,
self.max_text_length,
self.max_elem_length,
self.max_cell_num,
elem_num,
]
)
return data
def encode(self, text, char_or_elem):
"""convert text-label into text-index."""
if char_or_elem == "char":
max_len = self.max_text_length
current_dict = self.dict_character
else:
max_len = self.max_elem_length
current_dict = self.dict_elem
if len(text) > max_len:
return None
if len(text) == 0:
if char_or_elem == "char":
return [self.dict_character["space"]]
else:
return None
text_list = []
for char in text:
if char not in current_dict:
return None
text_list.append(current_dict[char])
if len(text_list) == 0:
if char_or_elem == "char":
return [self.dict_character["space"]]
else:
return None
return text_list
def get_ignored_tokens(self, char_or_elem):
beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
if char_or_elem == "char":
if beg_or_end == "beg":
idx = np.array(self.dict_character[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict_character[self.end_str])
else:
assert False, (
"Unsupport type %s in get_beg_end_flag_idx of char" % beg_or_end
)
elif char_or_elem == "elem":
if beg_or_end == "beg":
idx = np.array(self.dict_elem[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict_elem[self.end_str])
else:
assert False, (
"Unsupport type %s in get_beg_end_flag_idx of elem" % beg_or_end
)
else:
assert False, "Unsupport type %s in char_or_elem" % char_or_elem
return idx
class SARLabelEncode(BaseRecLabelEncode):
"""Convert between text-label and text-index"""
def __init__(
self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs
):
super(SARLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char
)
def add_special_char(self, dict_character):
beg_end_str = "<BOS/EOS>"
unknown_str = "<UKN>"
padding_str = "<PAD>"
dict_character = dict_character + [unknown_str]
self.unknown_idx = len(dict_character) - 1
dict_character = dict_character + [beg_end_str]
self.start_idx = len(dict_character) - 1
self.end_idx = len(dict_character) - 1
dict_character = dict_character + [padding_str]
self.padding_idx = len(dict_character) - 1
return dict_character
def __call__(self, data):
text = data["label"]
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len - 1:
return None
data["length"] = np.array(len(text))
target = [self.start_idx] + text + [self.end_idx]
padded_text = [self.padding_idx for _ in range(self.max_text_len)]
padded_text[: len(target)] = target
data["label"] = np.array(padded_text)
return data
def get_ignored_tokens(self):
return [self.padding_idx]
class PRENLabelEncode(BaseRecLabelEncode):
def __init__(
self, max_text_length, character_dict_path, use_space_char=False, **kwargs
):
super(PRENLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char
)
def add_special_char(self, dict_character):
padding_str = "<PAD>" # 0
end_str = "<EOS>" # 1
unknown_str = "<UNK>" # 2
dict_character = [padding_str, end_str, unknown_str] + dict_character
self.padding_idx = 0
self.end_idx = 1
self.unknown_idx = 2
return dict_character
def encode(self, text):
if len(text) == 0 or len(text) >= self.max_text_len:
return None
if self.lower:
text = text.lower()
text_list = []
for char in text:
if char not in self.dict:
text_list.append(self.unknown_idx)
else:
text_list.append(self.dict[char])
text_list.append(self.end_idx)
if len(text_list) < self.max_text_len:
text_list += [self.padding_idx] * (self.max_text_len - len(text_list))
return text_list
def __call__(self, data):
text = data["label"]
encoded_text = self.encode(text)
if encoded_text is None:
return None
data["label"] = np.array(encoded_text)
return data
class VQATokenLabelEncode(object):
"""
Label encode for NLP VQA methods
"""
def __init__(
self,
class_path,
contains_re=False,
add_special_ids=False,
algorithm="LayoutXLM",
infer_mode=False,
ocr_engine=None,
**kwargs
):
super(VQATokenLabelEncode, self).__init__()
from paddlenlp.transformers import (
LayoutLMTokenizer,
LayoutLMv2Tokenizer,
LayoutXLMTokenizer,
)
from ppocr.utils.utility import load_vqa_bio_label_maps
tokenizer_dict = {
"LayoutXLM": {
"class": LayoutXLMTokenizer,
"pretrained_model": "layoutxlm-base-uncased",
},
"LayoutLM": {
"class": LayoutLMTokenizer,
"pretrained_model": "layoutlm-base-uncased",
},
"LayoutLMv2": {
"class": LayoutLMv2Tokenizer,
"pretrained_model": "layoutlmv2-base-uncased",
},
}
self.contains_re = contains_re
tokenizer_config = tokenizer_dict[algorithm]
self.tokenizer = tokenizer_config["class"].from_pretrained(
tokenizer_config["pretrained_model"]
)
self.label2id_map, id2label_map = load_vqa_bio_label_maps(class_path)
self.add_special_ids = add_special_ids
self.infer_mode = infer_mode
self.ocr_engine = ocr_engine
def __call__(self, data):
# load bbox and label info
ocr_info = self._load_ocr_info(data)
height, width, _ = data["image"].shape
words_list = []
bbox_list = []
input_ids_list = []
token_type_ids_list = []
segment_offset_id = []
gt_label_list = []
entities = []
# for re
train_re = self.contains_re and not self.infer_mode
if train_re:
relations = []
id2label = {}
entity_id_to_index_map = {}
empty_entity = set()
data["ocr_info"] = copy.deepcopy(ocr_info)
for info in ocr_info:
if train_re:
# for re
if len(info["text"]) == 0:
empty_entity.add(info["id"])
continue
id2label[info["id"]] = info["label"]
relations.extend([tuple(sorted(l)) for l in info["linking"]])
# smooth_box
bbox = self._smooth_box(info["bbox"], height, width)
text = info["text"]
encode_res = self.tokenizer.encode(
text, pad_to_max_seq_len=False, return_attention_mask=True
)
if not self.add_special_ids:
# TODO: use tok.all_special_ids to remove
encode_res["input_ids"] = encode_res["input_ids"][1:-1]
encode_res["token_type_ids"] = encode_res["token_type_ids"][1:-1]
encode_res["attention_mask"] = encode_res["attention_mask"][1:-1]
# parse label
if not self.infer_mode:
label = info["label"]
gt_label = self._parse_label(label, encode_res)
# construct entities for re
if train_re:
if gt_label[0] != self.label2id_map["O"]:
entity_id_to_index_map[info["id"]] = len(entities)
label = label.upper()
entities.append(
{
"start": len(input_ids_list),
"end": len(input_ids_list) + len(encode_res["input_ids"]),
"label": label.upper(),
}
)
else:
entities.append(
{
"start": len(input_ids_list),
"end": len(input_ids_list) + len(encode_res["input_ids"]),
"label": "O",
}
)
input_ids_list.extend(encode_res["input_ids"])
token_type_ids_list.extend(encode_res["token_type_ids"])
bbox_list.extend([bbox] * len(encode_res["input_ids"]))
words_list.append(text)
segment_offset_id.append(len(input_ids_list))
if not self.infer_mode:
gt_label_list.extend(gt_label)
data["input_ids"] = input_ids_list
data["token_type_ids"] = token_type_ids_list
data["bbox"] = bbox_list
data["attention_mask"] = [1] * len(input_ids_list)
data["labels"] = gt_label_list
data["segment_offset_id"] = segment_offset_id
data["tokenizer_params"] = dict(
padding_side=self.tokenizer.padding_side,
pad_token_type_id=self.tokenizer.pad_token_type_id,
pad_token_id=self.tokenizer.pad_token_id,
)
data["entities"] = entities
if train_re:
data["relations"] = relations
data["id2label"] = id2label
data["empty_entity"] = empty_entity
data["entity_id_to_index_map"] = entity_id_to_index_map
return data
def _load_ocr_info(self, data):
def trans_poly_to_bbox(poly):
x1 = np.min([p[0] for p in poly])
x2 = np.max([p[0] for p in poly])
y1 = np.min([p[1] for p in poly])
y2 = np.max([p[1] for p in poly])
return [x1, y1, x2, y2]
if self.infer_mode:
ocr_result = self.ocr_engine.ocr(data["image"], cls=False)
ocr_info = []
for res in ocr_result:
ocr_info.append(
{
"text": res[1][0],
"bbox": trans_poly_to_bbox(res[0]),
"poly": res[0],
}
)
return ocr_info
else:
info = data["label"]
# read text info
info_dict = json.loads(info)
return info_dict["ocr_info"]
def _smooth_box(self, bbox, height, width):
bbox[0] = int(bbox[0] * 1000.0 / width)
bbox[2] = int(bbox[2] * 1000.0 / width)
bbox[1] = int(bbox[1] * 1000.0 / height)
bbox[3] = int(bbox[3] * 1000.0 / height)
return bbox
def _parse_label(self, label, encode_res):
gt_label = []
if label.lower() == "other":
gt_label.extend([0] * len(encode_res["input_ids"]))
else:
gt_label.append(self.label2id_map[("b-" + label).upper()])
gt_label.extend(
[self.label2id_map[("i-" + label).upper()]]
* (len(encode_res["input_ids"]) - 1)
)
return gt_label
class MultiLabelEncode(BaseRecLabelEncode):
def __init__(
self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs
):
super(MultiLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char
)
self.ctc_encode = CTCLabelEncode(
max_text_length, character_dict_path, use_space_char, **kwargs
)
self.sar_encode = SARLabelEncode(
max_text_length, character_dict_path, use_space_char, **kwargs
)
def __call__(self, data):
data_ctc = copy.deepcopy(data)
data_sar = copy.deepcopy(data)
data_out = dict()
data_out["img_path"] = data.get("img_path", None)
data_out["image"] = data["image"]
ctc = self.ctc_encode.__call__(data_ctc)
sar = self.sar_encode.__call__(data_sar)
if ctc is None or sar is None:
return None
data_out["label_ctc"] = ctc["label"]
data_out["label_sar"] = sar["label"]
data_out["length"] = ctc["length"]
return data_out