Spaces:
Runtime error
Runtime error
import cv2 | |
import numpy as np | |
from numpy.fft import fft | |
from numpy.linalg import norm | |
def vector_slope(vec): | |
assert len(vec) == 2 | |
return abs(vec[1] / (vec[0] + 1e-8)) | |
class FCENetTargets: | |
"""Generate the ground truth targets of FCENet: Fourier Contour Embedding | |
for Arbitrary-Shaped Text Detection. | |
[https://arxiv.org/abs/2104.10442] | |
Args: | |
fourier_degree (int): The maximum Fourier transform degree k. | |
resample_step (float): The step size for resampling the text center | |
line (TCL). It's better not to exceed half of the minimum width. | |
center_region_shrink_ratio (float): The shrink ratio of text center | |
region. | |
level_size_divisors (tuple(int)): The downsample ratio on each level. | |
level_proportion_range (tuple(tuple(int))): The range of text sizes | |
assigned to each level. | |
""" | |
def __init__( | |
self, | |
fourier_degree=5, | |
resample_step=4.0, | |
center_region_shrink_ratio=0.3, | |
level_size_divisors=(8, 16, 32), | |
level_proportion_range=((0, 0.25), (0.2, 0.65), (0.55, 1.0)), | |
orientation_thr=2.0, | |
**kwargs | |
): | |
super().__init__() | |
assert isinstance(level_size_divisors, tuple) | |
assert isinstance(level_proportion_range, tuple) | |
assert len(level_size_divisors) == len(level_proportion_range) | |
self.fourier_degree = fourier_degree | |
self.resample_step = resample_step | |
self.center_region_shrink_ratio = center_region_shrink_ratio | |
self.level_size_divisors = level_size_divisors | |
self.level_proportion_range = level_proportion_range | |
self.orientation_thr = orientation_thr | |
def vector_angle(self, vec1, vec2): | |
if vec1.ndim > 1: | |
unit_vec1 = vec1 / (norm(vec1, axis=-1) + 1e-8).reshape((-1, 1)) | |
else: | |
unit_vec1 = vec1 / (norm(vec1, axis=-1) + 1e-8) | |
if vec2.ndim > 1: | |
unit_vec2 = vec2 / (norm(vec2, axis=-1) + 1e-8).reshape((-1, 1)) | |
else: | |
unit_vec2 = vec2 / (norm(vec2, axis=-1) + 1e-8) | |
return np.arccos(np.clip(np.sum(unit_vec1 * unit_vec2, axis=-1), -1.0, 1.0)) | |
def resample_line(self, line, n): | |
"""Resample n points on a line. | |
Args: | |
line (ndarray): The points composing a line. | |
n (int): The resampled points number. | |
Returns: | |
resampled_line (ndarray): The points composing the resampled line. | |
""" | |
assert line.ndim == 2 | |
assert line.shape[0] >= 2 | |
assert line.shape[1] == 2 | |
assert isinstance(n, int) | |
assert n > 0 | |
length_list = [norm(line[i + 1] - line[i]) for i in range(len(line) - 1)] | |
total_length = sum(length_list) | |
length_cumsum = np.cumsum([0.0] + length_list) | |
delta_length = total_length / (float(n) + 1e-8) | |
current_edge_ind = 0 | |
resampled_line = [line[0]] | |
for i in range(1, n): | |
current_line_len = i * delta_length | |
while current_line_len >= length_cumsum[current_edge_ind + 1]: | |
current_edge_ind += 1 | |
current_edge_end_shift = current_line_len - length_cumsum[current_edge_ind] | |
end_shift_ratio = current_edge_end_shift / length_list[current_edge_ind] | |
current_point = ( | |
line[current_edge_ind] | |
+ (line[current_edge_ind + 1] - line[current_edge_ind]) | |
* end_shift_ratio | |
) | |
resampled_line.append(current_point) | |
resampled_line.append(line[-1]) | |
resampled_line = np.array(resampled_line) | |
return resampled_line | |
def reorder_poly_edge(self, points): | |
"""Get the respective points composing head edge, tail edge, top | |
sideline and bottom sideline. | |
Args: | |
points (ndarray): The points composing a text polygon. | |
Returns: | |
head_edge (ndarray): The two points composing the head edge of text | |
polygon. | |
tail_edge (ndarray): The two points composing the tail edge of text | |
polygon. | |
top_sideline (ndarray): The points composing top curved sideline of | |
text polygon. | |
bot_sideline (ndarray): The points composing bottom curved sideline | |
of text polygon. | |
""" | |
assert points.ndim == 2 | |
assert points.shape[0] >= 4 | |
assert points.shape[1] == 2 | |
head_inds, tail_inds = self.find_head_tail(points, self.orientation_thr) | |
head_edge, tail_edge = points[head_inds], points[tail_inds] | |
pad_points = np.vstack([points, points]) | |
if tail_inds[1] < 1: | |
tail_inds[1] = len(points) | |
sideline1 = pad_points[head_inds[1] : tail_inds[1]] | |
sideline2 = pad_points[tail_inds[1] : (head_inds[1] + len(points))] | |
sideline_mean_shift = np.mean(sideline1, axis=0) - np.mean(sideline2, axis=0) | |
if sideline_mean_shift[1] > 0: | |
top_sideline, bot_sideline = sideline2, sideline1 | |
else: | |
top_sideline, bot_sideline = sideline1, sideline2 | |
return head_edge, tail_edge, top_sideline, bot_sideline | |
def find_head_tail(self, points, orientation_thr): | |
"""Find the head edge and tail edge of a text polygon. | |
Args: | |
points (ndarray): The points composing a text polygon. | |
orientation_thr (float): The threshold for distinguishing between | |
head edge and tail edge among the horizontal and vertical edges | |
of a quadrangle. | |
Returns: | |
head_inds (list): The indexes of two points composing head edge. | |
tail_inds (list): The indexes of two points composing tail edge. | |
""" | |
assert points.ndim == 2 | |
assert points.shape[0] >= 4 | |
assert points.shape[1] == 2 | |
assert isinstance(orientation_thr, float) | |
if len(points) > 4: | |
pad_points = np.vstack([points, points[0]]) | |
edge_vec = pad_points[1:] - pad_points[:-1] | |
theta_sum = [] | |
adjacent_vec_theta = [] | |
for i, edge_vec1 in enumerate(edge_vec): | |
adjacent_ind = [x % len(edge_vec) for x in [i - 1, i + 1]] | |
adjacent_edge_vec = edge_vec[adjacent_ind] | |
temp_theta_sum = np.sum(self.vector_angle(edge_vec1, adjacent_edge_vec)) | |
temp_adjacent_theta = self.vector_angle( | |
adjacent_edge_vec[0], adjacent_edge_vec[1] | |
) | |
theta_sum.append(temp_theta_sum) | |
adjacent_vec_theta.append(temp_adjacent_theta) | |
theta_sum_score = np.array(theta_sum) / np.pi | |
adjacent_theta_score = np.array(adjacent_vec_theta) / np.pi | |
poly_center = np.mean(points, axis=0) | |
edge_dist = np.maximum( | |
norm(pad_points[1:] - poly_center, axis=-1), | |
norm(pad_points[:-1] - poly_center, axis=-1), | |
) | |
dist_score = edge_dist / np.max(edge_dist) | |
position_score = np.zeros(len(edge_vec)) | |
score = 0.5 * theta_sum_score + 0.15 * adjacent_theta_score | |
score += 0.35 * dist_score | |
if len(points) % 2 == 0: | |
position_score[(len(score) // 2 - 1)] += 1 | |
position_score[-1] += 1 | |
score += 0.1 * position_score | |
pad_score = np.concatenate([score, score]) | |
score_matrix = np.zeros((len(score), len(score) - 3)) | |
x = np.arange(len(score) - 3) / float(len(score) - 4) | |
gaussian = ( | |
1.0 | |
/ (np.sqrt(2.0 * np.pi) * 0.5) | |
* np.exp(-np.power((x - 0.5) / 0.5, 2.0) / 2) | |
) | |
gaussian = gaussian / np.max(gaussian) | |
for i in range(len(score)): | |
score_matrix[i, :] = ( | |
score[i] | |
+ pad_score[(i + 2) : (i + len(score) - 1)] * gaussian * 0.3 | |
) | |
head_start, tail_increment = np.unravel_index( | |
score_matrix.argmax(), score_matrix.shape | |
) | |
tail_start = (head_start + tail_increment + 2) % len(points) | |
head_end = (head_start + 1) % len(points) | |
tail_end = (tail_start + 1) % len(points) | |
if head_end > tail_end: | |
head_start, tail_start = tail_start, head_start | |
head_end, tail_end = tail_end, head_end | |
head_inds = [head_start, head_end] | |
tail_inds = [tail_start, tail_end] | |
else: | |
if vector_slope(points[1] - points[0]) + vector_slope( | |
points[3] - points[2] | |
) < vector_slope(points[2] - points[1]) + vector_slope( | |
points[0] - points[3] | |
): | |
horizontal_edge_inds = [[0, 1], [2, 3]] | |
vertical_edge_inds = [[3, 0], [1, 2]] | |
else: | |
horizontal_edge_inds = [[3, 0], [1, 2]] | |
vertical_edge_inds = [[0, 1], [2, 3]] | |
vertical_len_sum = norm( | |
points[vertical_edge_inds[0][0]] - points[vertical_edge_inds[0][1]] | |
) + norm( | |
points[vertical_edge_inds[1][0]] - points[vertical_edge_inds[1][1]] | |
) | |
horizontal_len_sum = norm( | |
points[horizontal_edge_inds[0][0]] - points[horizontal_edge_inds[0][1]] | |
) + norm( | |
points[horizontal_edge_inds[1][0]] - points[horizontal_edge_inds[1][1]] | |
) | |
if vertical_len_sum > horizontal_len_sum * orientation_thr: | |
head_inds = horizontal_edge_inds[0] | |
tail_inds = horizontal_edge_inds[1] | |
else: | |
head_inds = vertical_edge_inds[0] | |
tail_inds = vertical_edge_inds[1] | |
return head_inds, tail_inds | |
def resample_sidelines(self, sideline1, sideline2, resample_step): | |
"""Resample two sidelines to be of the same points number according to | |
step size. | |
Args: | |
sideline1 (ndarray): The points composing a sideline of a text | |
polygon. | |
sideline2 (ndarray): The points composing another sideline of a | |
text polygon. | |
resample_step (float): The resampled step size. | |
Returns: | |
resampled_line1 (ndarray): The resampled line 1. | |
resampled_line2 (ndarray): The resampled line 2. | |
""" | |
assert sideline1.ndim == sideline2.ndim == 2 | |
assert sideline1.shape[1] == sideline2.shape[1] == 2 | |
assert sideline1.shape[0] >= 2 | |
assert sideline2.shape[0] >= 2 | |
assert isinstance(resample_step, float) | |
length1 = sum( | |
[norm(sideline1[i + 1] - sideline1[i]) for i in range(len(sideline1) - 1)] | |
) | |
length2 = sum( | |
[norm(sideline2[i + 1] - sideline2[i]) for i in range(len(sideline2) - 1)] | |
) | |
total_length = (length1 + length2) / 2 | |
resample_point_num = max(int(float(total_length) / resample_step), 1) | |
resampled_line1 = self.resample_line(sideline1, resample_point_num) | |
resampled_line2 = self.resample_line(sideline2, resample_point_num) | |
return resampled_line1, resampled_line2 | |
def generate_center_region_mask(self, img_size, text_polys): | |
"""Generate text center region mask. | |
Args: | |
img_size (tuple): The image size of (height, width). | |
text_polys (list[list[ndarray]]): The list of text polygons. | |
Returns: | |
center_region_mask (ndarray): The text center region mask. | |
""" | |
assert isinstance(img_size, tuple) | |
# assert check_argument.is_2dlist(text_polys) | |
h, w = img_size | |
center_region_mask = np.zeros((h, w), np.uint8) | |
center_region_boxes = [] | |
for poly in text_polys: | |
# assert len(poly) == 1 | |
polygon_points = poly.reshape(-1, 2) | |
_, _, top_line, bot_line = self.reorder_poly_edge(polygon_points) | |
resampled_top_line, resampled_bot_line = self.resample_sidelines( | |
top_line, bot_line, self.resample_step | |
) | |
resampled_bot_line = resampled_bot_line[::-1] | |
center_line = (resampled_top_line + resampled_bot_line) / 2 | |
line_head_shrink_len = ( | |
norm(resampled_top_line[0] - resampled_bot_line[0]) / 4.0 | |
) | |
line_tail_shrink_len = ( | |
norm(resampled_top_line[-1] - resampled_bot_line[-1]) / 4.0 | |
) | |
head_shrink_num = int(line_head_shrink_len // self.resample_step) | |
tail_shrink_num = int(line_tail_shrink_len // self.resample_step) | |
if len(center_line) > head_shrink_num + tail_shrink_num + 2: | |
center_line = center_line[ | |
head_shrink_num : len(center_line) - tail_shrink_num | |
] | |
resampled_top_line = resampled_top_line[ | |
head_shrink_num : len(resampled_top_line) - tail_shrink_num | |
] | |
resampled_bot_line = resampled_bot_line[ | |
head_shrink_num : len(resampled_bot_line) - tail_shrink_num | |
] | |
for i in range(0, len(center_line) - 1): | |
tl = ( | |
center_line[i] | |
+ (resampled_top_line[i] - center_line[i]) | |
* self.center_region_shrink_ratio | |
) | |
tr = ( | |
center_line[i + 1] | |
+ (resampled_top_line[i + 1] - center_line[i + 1]) | |
* self.center_region_shrink_ratio | |
) | |
br = ( | |
center_line[i + 1] | |
+ (resampled_bot_line[i + 1] - center_line[i + 1]) | |
* self.center_region_shrink_ratio | |
) | |
bl = ( | |
center_line[i] | |
+ (resampled_bot_line[i] - center_line[i]) | |
* self.center_region_shrink_ratio | |
) | |
current_center_box = np.vstack([tl, tr, br, bl]).astype(np.int32) | |
center_region_boxes.append(current_center_box) | |
cv2.fillPoly(center_region_mask, center_region_boxes, 1) | |
return center_region_mask | |
def resample_polygon(self, polygon, n=400): | |
"""Resample one polygon with n points on its boundary. | |
Args: | |
polygon (list[float]): The input polygon. | |
n (int): The number of resampled points. | |
Returns: | |
resampled_polygon (list[float]): The resampled polygon. | |
""" | |
length = [] | |
for i in range(len(polygon)): | |
p1 = polygon[i] | |
if i == len(polygon) - 1: | |
p2 = polygon[0] | |
else: | |
p2 = polygon[i + 1] | |
length.append(((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) ** 0.5) | |
total_length = sum(length) | |
n_on_each_line = (np.array(length) / (total_length + 1e-8)) * n | |
n_on_each_line = n_on_each_line.astype(np.int32) | |
new_polygon = [] | |
for i in range(len(polygon)): | |
num = n_on_each_line[i] | |
p1 = polygon[i] | |
if i == len(polygon) - 1: | |
p2 = polygon[0] | |
else: | |
p2 = polygon[i + 1] | |
if num == 0: | |
continue | |
dxdy = (p2 - p1) / num | |
for j in range(num): | |
point = p1 + dxdy * j | |
new_polygon.append(point) | |
return np.array(new_polygon) | |
def normalize_polygon(self, polygon): | |
"""Normalize one polygon so that its start point is at right most. | |
Args: | |
polygon (list[float]): The origin polygon. | |
Returns: | |
new_polygon (lost[float]): The polygon with start point at right. | |
""" | |
temp_polygon = polygon - polygon.mean(axis=0) | |
x = np.abs(temp_polygon[:, 0]) | |
y = temp_polygon[:, 1] | |
index_x = np.argsort(x) | |
index_y = np.argmin(y[index_x[:8]]) | |
index = index_x[index_y] | |
new_polygon = np.concatenate([polygon[index:], polygon[:index]]) | |
return new_polygon | |
def poly2fourier(self, polygon, fourier_degree): | |
"""Perform Fourier transformation to generate Fourier coefficients ck | |
from polygon. | |
Args: | |
polygon (ndarray): An input polygon. | |
fourier_degree (int): The maximum Fourier degree K. | |
Returns: | |
c (ndarray(complex)): Fourier coefficients. | |
""" | |
points = polygon[:, 0] + polygon[:, 1] * 1j | |
c_fft = fft(points) / len(points) | |
c = np.hstack((c_fft[-fourier_degree:], c_fft[: fourier_degree + 1])) | |
return c | |
def clockwise(self, c, fourier_degree): | |
"""Make sure the polygon reconstructed from Fourier coefficients c in | |
the clockwise direction. | |
Args: | |
polygon (list[float]): The origin polygon. | |
Returns: | |
new_polygon (lost[float]): The polygon in clockwise point order. | |
""" | |
if np.abs(c[fourier_degree + 1]) > np.abs(c[fourier_degree - 1]): | |
return c | |
elif np.abs(c[fourier_degree + 1]) < np.abs(c[fourier_degree - 1]): | |
return c[::-1] | |
else: | |
if np.abs(c[fourier_degree + 2]) > np.abs(c[fourier_degree - 2]): | |
return c | |
else: | |
return c[::-1] | |
def cal_fourier_signature(self, polygon, fourier_degree): | |
"""Calculate Fourier signature from input polygon. | |
Args: | |
polygon (ndarray): The input polygon. | |
fourier_degree (int): The maximum Fourier degree K. | |
Returns: | |
fourier_signature (ndarray): An array shaped (2k+1, 2) containing | |
real part and image part of 2k+1 Fourier coefficients. | |
""" | |
resampled_polygon = self.resample_polygon(polygon) | |
resampled_polygon = self.normalize_polygon(resampled_polygon) | |
fourier_coeff = self.poly2fourier(resampled_polygon, fourier_degree) | |
fourier_coeff = self.clockwise(fourier_coeff, fourier_degree) | |
real_part = np.real(fourier_coeff).reshape((-1, 1)) | |
image_part = np.imag(fourier_coeff).reshape((-1, 1)) | |
fourier_signature = np.hstack([real_part, image_part]) | |
return fourier_signature | |
def generate_fourier_maps(self, img_size, text_polys): | |
"""Generate Fourier coefficient maps. | |
Args: | |
img_size (tuple): The image size of (height, width). | |
text_polys (list[list[ndarray]]): The list of text polygons. | |
Returns: | |
fourier_real_map (ndarray): The Fourier coefficient real part maps. | |
fourier_image_map (ndarray): The Fourier coefficient image part | |
maps. | |
""" | |
assert isinstance(img_size, tuple) | |
h, w = img_size | |
k = self.fourier_degree | |
real_map = np.zeros((k * 2 + 1, h, w), dtype=np.float32) | |
imag_map = np.zeros((k * 2 + 1, h, w), dtype=np.float32) | |
for poly in text_polys: | |
mask = np.zeros((h, w), dtype=np.uint8) | |
polygon = np.array(poly).reshape((1, -1, 2)) | |
cv2.fillPoly(mask, polygon.astype(np.int32), 1) | |
fourier_coeff = self.cal_fourier_signature(polygon[0], k) | |
for i in range(-k, k + 1): | |
if i != 0: | |
real_map[i + k, :, :] = ( | |
mask * fourier_coeff[i + k, 0] | |
+ (1 - mask) * real_map[i + k, :, :] | |
) | |
imag_map[i + k, :, :] = ( | |
mask * fourier_coeff[i + k, 1] | |
+ (1 - mask) * imag_map[i + k, :, :] | |
) | |
else: | |
yx = np.argwhere(mask > 0.5) | |
k_ind = np.ones((len(yx)), dtype=np.int64) * k | |
y, x = yx[:, 0], yx[:, 1] | |
real_map[k_ind, y, x] = fourier_coeff[k, 0] - x | |
imag_map[k_ind, y, x] = fourier_coeff[k, 1] - y | |
return real_map, imag_map | |
def generate_text_region_mask(self, img_size, text_polys): | |
"""Generate text center region mask and geometry attribute maps. | |
Args: | |
img_size (tuple): The image size (height, width). | |
text_polys (list[list[ndarray]]): The list of text polygons. | |
Returns: | |
text_region_mask (ndarray): The text region mask. | |
""" | |
assert isinstance(img_size, tuple) | |
h, w = img_size | |
text_region_mask = np.zeros((h, w), dtype=np.uint8) | |
for poly in text_polys: | |
polygon = np.array(poly, dtype=np.int32).reshape((1, -1, 2)) | |
cv2.fillPoly(text_region_mask, polygon, 1) | |
return text_region_mask | |
def generate_effective_mask(self, mask_size: tuple, polygons_ignore): | |
"""Generate effective mask by setting the ineffective regions to 0 and | |
effective regions to 1. | |
Args: | |
mask_size (tuple): The mask size. | |
polygons_ignore (list[[ndarray]]: The list of ignored text | |
polygons. | |
Returns: | |
mask (ndarray): The effective mask of (height, width). | |
""" | |
mask = np.ones(mask_size, dtype=np.uint8) | |
for poly in polygons_ignore: | |
instance = poly.reshape(-1, 2).astype(np.int32).reshape(1, -1, 2) | |
cv2.fillPoly(mask, instance, 0) | |
return mask | |
def generate_level_targets(self, img_size, text_polys, ignore_polys): | |
"""Generate ground truth target on each level. | |
Args: | |
img_size (list[int]): Shape of input image. | |
text_polys (list[list[ndarray]]): A list of ground truth polygons. | |
ignore_polys (list[list[ndarray]]): A list of ignored polygons. | |
Returns: | |
level_maps (list(ndarray)): A list of ground target on each level. | |
""" | |
h, w = img_size | |
lv_size_divs = self.level_size_divisors | |
lv_proportion_range = self.level_proportion_range | |
lv_text_polys = [[] for i in range(len(lv_size_divs))] | |
lv_ignore_polys = [[] for i in range(len(lv_size_divs))] | |
level_maps = [] | |
for poly in text_polys: | |
polygon = np.array(poly, dtype=np.int).reshape((1, -1, 2)) | |
_, _, box_w, box_h = cv2.boundingRect(polygon) | |
proportion = max(box_h, box_w) / (h + 1e-8) | |
for ind, proportion_range in enumerate(lv_proportion_range): | |
if proportion_range[0] < proportion < proportion_range[1]: | |
lv_text_polys[ind].append(poly / lv_size_divs[ind]) | |
for ignore_poly in ignore_polys: | |
polygon = np.array(ignore_poly, dtype=np.int).reshape((1, -1, 2)) | |
_, _, box_w, box_h = cv2.boundingRect(polygon) | |
proportion = max(box_h, box_w) / (h + 1e-8) | |
for ind, proportion_range in enumerate(lv_proportion_range): | |
if proportion_range[0] < proportion < proportion_range[1]: | |
lv_ignore_polys[ind].append(ignore_poly / lv_size_divs[ind]) | |
for ind, size_divisor in enumerate(lv_size_divs): | |
current_level_maps = [] | |
level_img_size = (h // size_divisor, w // size_divisor) | |
text_region = self.generate_text_region_mask( | |
level_img_size, lv_text_polys[ind] | |
)[None] | |
current_level_maps.append(text_region) | |
center_region = self.generate_center_region_mask( | |
level_img_size, lv_text_polys[ind] | |
)[None] | |
current_level_maps.append(center_region) | |
effective_mask = self.generate_effective_mask( | |
level_img_size, lv_ignore_polys[ind] | |
)[None] | |
current_level_maps.append(effective_mask) | |
fourier_real_map, fourier_image_maps = self.generate_fourier_maps( | |
level_img_size, lv_text_polys[ind] | |
) | |
current_level_maps.append(fourier_real_map) | |
current_level_maps.append(fourier_image_maps) | |
level_maps.append(np.concatenate(current_level_maps)) | |
return level_maps | |
def generate_targets(self, results): | |
"""Generate the ground truth targets for FCENet. | |
Args: | |
results (dict): The input result dictionary. | |
Returns: | |
results (dict): The output result dictionary. | |
""" | |
assert isinstance(results, dict) | |
image = results["image"] | |
polygons = results["polys"] | |
ignore_tags = results["ignore_tags"] | |
h, w, _ = image.shape | |
polygon_masks = [] | |
polygon_masks_ignore = [] | |
for tag, polygon in zip(ignore_tags, polygons): | |
if tag is True: | |
polygon_masks_ignore.append(polygon) | |
else: | |
polygon_masks.append(polygon) | |
level_maps = self.generate_level_targets( | |
(h, w), polygon_masks, polygon_masks_ignore | |
) | |
mapping = { | |
"p3_maps": level_maps[0], | |
"p4_maps": level_maps[1], | |
"p5_maps": level_maps[2], | |
} | |
for key, value in mapping.items(): | |
results[key] = value | |
return results | |
def __call__(self, results): | |
results = self.generate_targets(results) | |
return results | |