Spaces:
Runtime error
Runtime error
import os | |
import sys | |
__dir__ = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append(__dir__) | |
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, "../.."))) | |
os.environ["FLAGS_allocator_strategy"] = "auto_growth" | |
import json | |
import sys | |
import time | |
import cv2 | |
import numpy as np | |
import utility | |
from postprocess import build_post_process | |
from ppocr.data import create_operators, transform | |
class TextDetector(object): | |
def __init__(self, args): | |
self.args = args | |
self.det_algorithm = args.det_algorithm | |
self.use_onnx = args.use_onnx | |
pre_process_list = [ | |
{ | |
"DetResizeForTest": { | |
"limit_side_len": args.det_limit_side_len, | |
"limit_type": args.det_limit_type, | |
} | |
}, | |
{ | |
"NormalizeImage": { | |
"std": [0.229, 0.224, 0.225], | |
"mean": [0.485, 0.456, 0.406], | |
"scale": "1./255.", | |
"order": "hwc", | |
} | |
}, | |
{"ToCHWImage": None}, | |
{"KeepKeys": {"keep_keys": ["image", "shape"]}}, | |
] | |
postprocess_params = {} | |
if self.det_algorithm == "DB": | |
postprocess_params["name"] = "DBPostProcess" | |
postprocess_params["thresh"] = args.det_db_thresh | |
postprocess_params["box_thresh"] = args.det_db_box_thresh | |
postprocess_params["max_candidates"] = 1000 | |
postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio | |
postprocess_params["use_dilation"] = args.use_dilation | |
postprocess_params["score_mode"] = args.det_db_score_mode | |
elif self.det_algorithm == "EAST": | |
postprocess_params["name"] = "EASTPostProcess" | |
postprocess_params["score_thresh"] = args.det_east_score_thresh | |
postprocess_params["cover_thresh"] = args.det_east_cover_thresh | |
postprocess_params["nms_thresh"] = args.det_east_nms_thresh | |
elif self.det_algorithm == "SAST": | |
pre_process_list[0] = { | |
"DetResizeForTest": {"resize_long": args.det_limit_side_len} | |
} | |
postprocess_params["name"] = "SASTPostProcess" | |
postprocess_params["score_thresh"] = args.det_sast_score_thresh | |
postprocess_params["nms_thresh"] = args.det_sast_nms_thresh | |
self.det_sast_polygon = args.det_sast_polygon | |
if self.det_sast_polygon: | |
postprocess_params["sample_pts_num"] = 6 | |
postprocess_params["expand_scale"] = 1.2 | |
postprocess_params["shrink_ratio_of_width"] = 0.2 | |
else: | |
postprocess_params["sample_pts_num"] = 2 | |
postprocess_params["expand_scale"] = 1.0 | |
postprocess_params["shrink_ratio_of_width"] = 0.3 | |
elif self.det_algorithm == "PSE": | |
postprocess_params["name"] = "PSEPostProcess" | |
postprocess_params["thresh"] = args.det_pse_thresh | |
postprocess_params["box_thresh"] = args.det_pse_box_thresh | |
postprocess_params["min_area"] = args.det_pse_min_area | |
postprocess_params["box_type"] = args.det_pse_box_type | |
postprocess_params["scale"] = args.det_pse_scale | |
self.det_pse_box_type = args.det_pse_box_type | |
elif self.det_algorithm == "FCE": | |
pre_process_list[0] = {"DetResizeForTest": {"rescale_img": [1080, 736]}} | |
postprocess_params["name"] = "FCEPostProcess" | |
postprocess_params["scales"] = args.scales | |
postprocess_params["alpha"] = args.alpha | |
postprocess_params["beta"] = args.beta | |
postprocess_params["fourier_degree"] = args.fourier_degree | |
postprocess_params["box_type"] = args.det_fce_box_type | |
self.preprocess_op = create_operators(pre_process_list) | |
self.postprocess_op = build_post_process(postprocess_params) | |
( | |
self.predictor, | |
self.input_tensor, | |
self.output_tensors, | |
self.config, | |
) = utility.create_predictor(args, "det") | |
if self.use_onnx: | |
img_h, img_w = self.input_tensor.shape[2:] | |
if img_h is not None and img_w is not None and img_h > 0 and img_w > 0: | |
pre_process_list[0] = { | |
"DetResizeForTest": {"image_shape": [img_h, img_w]} | |
} | |
self.preprocess_op = create_operators(pre_process_list) | |
def order_points_clockwise(self, pts): | |
rect = np.zeros((4, 2), dtype="float32") | |
s = pts.sum(axis=1) | |
rect[0] = pts[np.argmin(s)] | |
rect[2] = pts[np.argmax(s)] | |
diff = np.diff(pts, axis=1) | |
rect[1] = pts[np.argmin(diff)] | |
rect[3] = pts[np.argmax(diff)] | |
return rect | |
def clip_det_res(self, points, img_height, img_width): | |
for pno in range(points.shape[0]): | |
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1)) | |
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1)) | |
return points | |
def filter_tag_det_res(self, dt_boxes, image_shape): | |
img_height, img_width = image_shape[0:2] | |
dt_boxes_new = [] | |
for box in dt_boxes: | |
box = self.order_points_clockwise(box) | |
box = self.clip_det_res(box, img_height, img_width) | |
rect_width = int(np.linalg.norm(box[0] - box[1])) | |
rect_height = int(np.linalg.norm(box[0] - box[3])) | |
if rect_width <= 3 or rect_height <= 3: | |
continue | |
dt_boxes_new.append(box) | |
dt_boxes = np.array(dt_boxes_new) | |
return dt_boxes | |
def filter_tag_det_res_only_clip(self, dt_boxes, image_shape): | |
img_height, img_width = image_shape[0:2] | |
dt_boxes_new = [] | |
for box in dt_boxes: | |
box = self.clip_det_res(box, img_height, img_width) | |
dt_boxes_new.append(box) | |
dt_boxes = np.array(dt_boxes_new) | |
return dt_boxes | |
def __call__(self, img): | |
ori_im = img.copy() | |
data = {"image": img} | |
st = time.time() | |
data = transform(data, self.preprocess_op) | |
img, shape_list = data | |
if img is None: | |
return None, 0 | |
img = np.expand_dims(img, axis=0) | |
shape_list = np.expand_dims(shape_list, axis=0) | |
img = img.copy() | |
if self.use_onnx: | |
input_dict = {} | |
input_dict[self.input_tensor.name] = img | |
outputs = self.predictor.run(self.output_tensors, input_dict) | |
else: | |
self.input_tensor.copy_from_cpu(img) | |
self.predictor.run() | |
outputs = [] | |
for output_tensor in self.output_tensors: | |
output = output_tensor.copy_to_cpu() | |
outputs.append(output) | |
preds = {} | |
if self.det_algorithm == "EAST": | |
preds["f_geo"] = outputs[0] | |
preds["f_score"] = outputs[1] | |
elif self.det_algorithm == "SAST": | |
preds["f_border"] = outputs[0] | |
preds["f_score"] = outputs[1] | |
preds["f_tco"] = outputs[2] | |
preds["f_tvo"] = outputs[3] | |
elif self.det_algorithm in ["DB", "PSE"]: | |
preds["maps"] = outputs[0] | |
elif self.det_algorithm == "FCE": | |
for i, output in enumerate(outputs): | |
preds["level_{}".format(i)] = output | |
else: | |
raise NotImplementedError | |
# self.predictor.try_shrink_memory() | |
post_result = self.postprocess_op(preds, shape_list) | |
dt_boxes = post_result[0]["points"] | |
if (self.det_algorithm == "SAST" and self.det_sast_polygon) or ( | |
self.det_algorithm in ["PSE", "FCE"] | |
and self.postprocess_op.box_type == "poly" | |
): | |
dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape) | |
else: | |
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape) | |
et = time.time() | |
return dt_boxes, et - st | |
if __name__ == "__main__": | |
args = utility.parse_args() | |
image_file_list = ["images/y.png"] | |
text_detector = TextDetector(args) | |
count = 0 | |
total_time = 0 | |
draw_img_save = "./inference_results" | |
if args.warmup: | |
img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8) | |
for i in range(2): | |
res = text_detector(img) | |
if not os.path.exists(draw_img_save): | |
os.makedirs(draw_img_save) | |
save_results = [] | |
for image_file in image_file_list: | |
img = cv2.imread(image_file) | |
for _ in range(10): | |
st = time.time() | |
dt_boxes, _ = text_detector(img) | |
elapse = time.time() - st | |
print(elapse * 1000) | |
if count > 0: | |
total_time += elapse | |
count += 1 | |
save_pred = ( | |
os.path.basename(image_file) | |
+ "\t" | |
+ str(json.dumps([x.tolist() for x in dt_boxes])) | |
+ "\n" | |
) | |
save_results.append(save_pred) | |
src_im = utility.draw_text_det_res(dt_boxes, image_file) | |
img_name_pure = os.path.split(image_file)[-1] | |
img_path = os.path.join(draw_img_save, "det_res_{}".format(img_name_pure)) | |
cv2.imwrite(img_path, src_im) | |
with open(os.path.join(draw_img_save, "det_results.txt"), "w") as f: | |
f.writelines(save_results) | |
f.close() | |