deprem-ocr / app.py
merve's picture
merve HF staff
Update app.py
557995c
raw
history blame
5.73 kB
import gradio as gr
from easyocr import Reader
from PIL import Image
import io
import json
import csv
import openai
import ast
import os
openai.api_key = os.getenv('API_KEY')
reader = Reader(["tr"])
def get_parsed_address(input_img):
address_full_text = get_text(input_img)
return openai_response(address_full_text)
def get_text(input_img):
result = reader.readtext(input_img, detail=0)
return " ".join(result)
def save_csv(mahalle, il, sokak, apartman):
adres_full = [mahalle, il, sokak, apartman]
with open("adress_book.csv", "a", encoding="utf-8") as f:
write = csv.writer(f)
write.writerow(adres_full)
return adres_full
def get_json(mahalle, il, sokak, apartman):
adres = {"mahalle": mahalle, "il": il, "sokak": sokak, "apartman": apartman}
dump = json.dumps(adres, indent=4, ensure_ascii=False)
return dump
def text_dict_city(input):
eval_result = str(ast.literal_eval(input)["city"])
return eval_result
def text_dict_neighbourhood(input):
eval_result = str(ast.literal_eval(input)["neighbourhood"])
return eval_result
def text_dict_distinct(input):
eval_result = str(ast.literal_eval(input)["distinct"])
return eval_result
def text_dict_street(input):
eval_result = str(ast.literal_eval(input)["street"])
return eval_result
def text_dict_no(input):
eval_result = str(ast.literal_eval(input)["no"])
return eval_result
def text_dict_tel(input):
eval_result = str(ast.literal_eval(input)["tel"])
return eval_result
def text_dict_name(input):
eval_result = str(ast.literal_eval(input)["name_surname"])
return eval_result
def text_dict_address(input):
eval_result = str(ast.literal_eval(input)["address"])
return eval_result
def text_dict_no(input):
eval_result = str(ast.literal_eval(input)["no"])
return eval_result
def openai_response(ocr_input):
prompt = f"""Tabular Data Extraction You are a highly intelligent and accurate tabular data extractor from
plain text input and especially from emergency text that carries address information, your inputs can be text
of arbitrary size, but the output should be in [{{'tabular': {{'entity_type': 'entity'}} }}] JSON format Force it
to only extract keys that are shared as an example in the examples section, if a key value is not found in the
text input, then it should be ignored. Have only city, distinct, neighbourhood,
street, no, tel, name_surname, address Examples: Input: Deprem sırasında evimizde yer alan adresimiz: İstanbul,
Beşiktaş, Yıldız Mahallesi, Cumhuriyet Caddesi No: 35, cep telefonu numaram 5551231256, adim Ahmet Yilmaz
Output: {{'city': 'İstanbul', 'distinct': 'Beşiktaş', 'neighbourhood': 'Yıldız Mahallesi', 'street': 'Cumhuriyet Caddesi', 'no': '35', 'tel': '5551231256', 'name_surname': 'Ahmet Yılmaz', 'address': 'İstanbul, Beşiktaş, Yıldız Mahallesi, Cumhuriyet Caddesi No: 35'}}
Input: {ocr_input}
Output:
"""
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt,
temperature=0,
max_tokens=300,
top_p=1,
frequency_penalty=0.0,
presence_penalty=0.0,
stop=["\n"],
)
resp = response["choices"][0]["text"]
resp = eval(resp.replace("'{", "{").replace("}'", "}"))
resp["input"] = ocr_input
dict_keys = [
'city',
'distinct',
'neighbourhood',
'street',
'no',
'tel',
'name_surname',
'address',
'input',
]
for key in dict_keys:
if key not in resp.keys():
resp[key] = ''
return resp
with gr.Blocks() as demo:
gr.Markdown(
"""
# Enkaz Bildirme Uygulaması
""")
gr.Markdown("Bu uygulamada ekran görüntüsü sürükleyip bırakarak AFAD'a enkaz bildirimi yapabilirsiniz. Mesajı metin olarak da girebilirsiniz, tam adresi ayrıştırıp döndürür. API olarak kullanmak isterseniz sayfanın en altında use via api'ya tıklayın.")
with gr.Row():
img_area = gr.Image(label="Ekran Görüntüsü yükleyin 👇")
ocr_result = gr.Textbox(label="Metin yükleyin 👇 ")
open_api_text = gr.Textbox(label="Tam Adres")
submit_button = gr.Button(label="Yükle")
with gr.Column():
with gr.Row():
city = gr.Textbox(label="İl")
distinct = gr.Textbox(label="İlçe")
with gr.Row():
neighbourhood = gr.Textbox(label="Mahalle")
street = gr.Textbox(label="Sokak/Cadde/Bulvar")
with gr.Row():
tel = gr.Textbox(label="Telefon")
with gr.Row():
name_surname = gr.Textbox(label="İsim Soyisim")
address = gr.Textbox(label="Adres")
with gr.Row():
no = gr.Textbox(label="Kapı No")
submit_button.click(get_parsed_address, inputs = img_area, outputs = open_api_text, api_name="upload_image")
ocr_result.change(openai_response, ocr_result, open_api_text, api_name="upload-text")
open_api_text.change(text_dict_city, [open_api_text], city)
open_api_text.change(text_dict_distinct, [open_api_text], distinct)
open_api_text.change(text_dict_neighbourhood, [open_api_text], neighbourhood)
open_api_text.change(text_dict_street, [open_api_text], street)
open_api_text.change(text_dict_address, [open_api_text], address)
open_api_text.change(text_dict_tel, [open_api_text], tel)
open_api_text.change(text_dict_name, [open_api_text], name_surname)
open_api_text.change(text_dict_no, [open_api_text], no)
if __name__ == "__main__":
demo.launch()