Spaces:
Runtime error
Runtime error
import gradio as gr | |
from easyocr import Reader | |
from PIL import Image | |
import io | |
import json | |
import csv | |
import openai | |
import ast | |
import os | |
openai.api_key = os.getenv('API_KEY') | |
reader = Reader(["tr"]) | |
def get_parsed_address(input_img): | |
address_full_text = get_text(input_img) | |
return openai_response(address_full_text) | |
def get_text(input_img): | |
result = reader.readtext(input_img, detail=0) | |
return " ".join(result) | |
def save_csv(mahalle, il, sokak, apartman): | |
adres_full = [mahalle, il, sokak, apartman] | |
with open("adress_book.csv", "a", encoding="utf-8") as f: | |
write = csv.writer(f) | |
write.writerow(adres_full) | |
return adres_full | |
def get_json(mahalle, il, sokak, apartman): | |
adres = {"mahalle": mahalle, "il": il, "sokak": sokak, "apartman": apartman} | |
dump = json.dumps(adres, indent=4, ensure_ascii=False) | |
return dump | |
def text_dict_city(input): | |
eval_result = str(ast.literal_eval(input)["city"]) | |
return eval_result | |
def text_dict_neighbourhood(input): | |
eval_result = str(ast.literal_eval(input)["neighbourhood"]) | |
return eval_result | |
def text_dict_distinct(input): | |
eval_result = str(ast.literal_eval(input)["distinct"]) | |
return eval_result | |
def text_dict_street(input): | |
eval_result = str(ast.literal_eval(input)["street"]) | |
return eval_result | |
def text_dict_no(input): | |
eval_result = str(ast.literal_eval(input)["no"]) | |
return eval_result | |
def text_dict_tel(input): | |
eval_result = str(ast.literal_eval(input)["tel"]) | |
return eval_result | |
def text_dict_name(input): | |
eval_result = str(ast.literal_eval(input)["name_surname"]) | |
return eval_result | |
def text_dict_address(input): | |
eval_result = str(ast.literal_eval(input)["address"]) | |
return eval_result | |
def text_dict_no(input): | |
eval_result = str(ast.literal_eval(input)["no"]) | |
return eval_result | |
def openai_response(ocr_input): | |
prompt = f"""Tabular Data Extraction You are a highly intelligent and accurate tabular data extractor from | |
plain text input and especially from emergency text that carries address information, your inputs can be text | |
of arbitrary size, but the output should be in [{{'tabular': {{'entity_type': 'entity'}} }}] JSON format Force it | |
to only extract keys that are shared as an example in the examples section, if a key value is not found in the | |
text input, then it should be ignored. Have only city, distinct, neighbourhood, | |
street, no, tel, name_surname, address Examples: Input: Deprem sırasında evimizde yer alan adresimiz: İstanbul, | |
Beşiktaş, Yıldız Mahallesi, Cumhuriyet Caddesi No: 35, cep telefonu numaram 5551231256, adim Ahmet Yilmaz | |
Output: {{'city': 'İstanbul', 'distinct': 'Beşiktaş', 'neighbourhood': 'Yıldız Mahallesi', 'street': 'Cumhuriyet Caddesi', 'no': '35', 'tel': '5551231256', 'name_surname': 'Ahmet Yılmaz', 'address': 'İstanbul, Beşiktaş, Yıldız Mahallesi, Cumhuriyet Caddesi No: 35'}} | |
Input: {ocr_input} | |
Output: | |
""" | |
response = openai.Completion.create( | |
model="text-davinci-003", | |
prompt=prompt, | |
temperature=0, | |
max_tokens=300, | |
top_p=1, | |
frequency_penalty=0.0, | |
presence_penalty=0.0, | |
stop=["\n"], | |
) | |
resp = response["choices"][0]["text"] | |
resp = eval(resp.replace("'{", "{").replace("}'", "}")) | |
resp["input"] = ocr_input | |
dict_keys = [ | |
'city', | |
'distinct', | |
'neighbourhood', | |
'street', | |
'no', | |
'tel', | |
'name_surname', | |
'address', | |
'input', | |
] | |
for key in dict_keys: | |
if key not in resp.keys(): | |
resp[key] = '' | |
return resp | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# Enkaz Bildirme Uygulaması | |
""") | |
gr.Markdown("Bu uygulamada ekran görüntüsü sürükleyip bırakarak AFAD'a enkaz bildirimi yapabilirsiniz. Mesajı metin olarak da girebilirsiniz, tam adresi ayrıştırıp döndürür. API olarak kullanmak isterseniz sayfanın en altında use via api'ya tıklayın.") | |
with gr.Row(): | |
img_area = gr.Image(label="Ekran Görüntüsü yükleyin 👇") | |
ocr_result = gr.Textbox(label="Metin yükleyin 👇 ") | |
open_api_text = gr.Textbox(label="Tam Adres") | |
submit_button = gr.Button(label="Yükle") | |
with gr.Column(): | |
with gr.Row(): | |
city = gr.Textbox(label="İl") | |
distinct = gr.Textbox(label="İlçe") | |
with gr.Row(): | |
neighbourhood = gr.Textbox(label="Mahalle") | |
street = gr.Textbox(label="Sokak/Cadde/Bulvar") | |
with gr.Row(): | |
tel = gr.Textbox(label="Telefon") | |
with gr.Row(): | |
name_surname = gr.Textbox(label="İsim Soyisim") | |
address = gr.Textbox(label="Adres") | |
with gr.Row(): | |
no = gr.Textbox(label="Kapı No") | |
submit_button.click(get_parsed_address, inputs = img_area, outputs = open_api_text, api_name="upload_image") | |
ocr_result.change(openai_response, ocr_result, open_api_text, api_name="upload-text") | |
open_api_text.change(text_dict_city, [open_api_text], city) | |
open_api_text.change(text_dict_distinct, [open_api_text], distinct) | |
open_api_text.change(text_dict_neighbourhood, [open_api_text], neighbourhood) | |
open_api_text.change(text_dict_street, [open_api_text], street) | |
open_api_text.change(text_dict_address, [open_api_text], address) | |
open_api_text.change(text_dict_tel, [open_api_text], tel) | |
open_api_text.change(text_dict_name, [open_api_text], name_surname) | |
open_api_text.change(text_dict_no, [open_api_text], no) | |
if __name__ == "__main__": | |
demo.launch() |