File size: 34,343 Bytes
fc8c192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
import math

import cv2
import numpy as np

__all__ = ["PGProcessTrain"]


class PGProcessTrain(object):
    def __init__(
        self,
        character_dict_path,
        max_text_length,
        max_text_nums,
        tcl_len,
        batch_size=14,
        min_crop_size=24,
        min_text_size=4,
        max_text_size=512,
        **kwargs
    ):
        self.tcl_len = tcl_len
        self.max_text_length = max_text_length
        self.max_text_nums = max_text_nums
        self.batch_size = batch_size
        self.min_crop_size = min_crop_size
        self.min_text_size = min_text_size
        self.max_text_size = max_text_size
        self.Lexicon_Table = self.get_dict(character_dict_path)
        self.pad_num = len(self.Lexicon_Table)
        self.img_id = 0

    def get_dict(self, character_dict_path):
        character_str = ""
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
            for line in lines:
                line = line.decode("utf-8").strip("\n").strip("\r\n")
                character_str += line
            dict_character = list(character_str)
        return dict_character

    def quad_area(self, poly):
        """
        compute area of a polygon
        :param poly:
        :return:
        """
        edge = [
            (poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),
            (poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),
            (poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),
            (poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1]),
        ]
        return np.sum(edge) / 2.0

    def gen_quad_from_poly(self, poly):
        """
        Generate min area quad from poly.
        """
        point_num = poly.shape[0]
        min_area_quad = np.zeros((4, 2), dtype=np.float32)
        rect = cv2.minAreaRect(
            poly.astype(np.int32)
        )  # (center (x,y), (width, height), angle of rotation)
        box = np.array(cv2.boxPoints(rect))

        first_point_idx = 0
        min_dist = 1e4
        for i in range(4):
            dist = (
                np.linalg.norm(box[(i + 0) % 4] - poly[0])
                + np.linalg.norm(box[(i + 1) % 4] - poly[point_num // 2 - 1])
                + np.linalg.norm(box[(i + 2) % 4] - poly[point_num // 2])
                + np.linalg.norm(box[(i + 3) % 4] - poly[-1])
            )
            if dist < min_dist:
                min_dist = dist
                first_point_idx = i
        for i in range(4):
            min_area_quad[i] = box[(first_point_idx + i) % 4]

        return min_area_quad

    def check_and_validate_polys(self, polys, tags, im_size):
        """
        check so that the text poly is in the same direction,
        and also filter some invalid polygons
        :param polys:
        :param tags:
        :return:
        """
        (h, w) = im_size
        if polys.shape[0] == 0:
            return polys, np.array([]), np.array([])
        polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1)
        polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h - 1)

        validated_polys = []
        validated_tags = []
        hv_tags = []
        for poly, tag in zip(polys, tags):
            quad = self.gen_quad_from_poly(poly)
            p_area = self.quad_area(quad)
            if abs(p_area) < 1:
                print("invalid poly")
                continue
            if p_area > 0:
                if tag == False:
                    print("poly in wrong direction")
                    tag = True  # reversed cases should be ignore
                poly = poly[(0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1), :]
                quad = quad[(0, 3, 2, 1), :]

            len_w = np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(
                quad[3] - quad[2]
            )
            len_h = np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(
                quad[1] - quad[2]
            )
            hv_tag = 1

            if len_w * 2.0 < len_h:
                hv_tag = 0

            validated_polys.append(poly)
            validated_tags.append(tag)
            hv_tags.append(hv_tag)
        return np.array(validated_polys), np.array(validated_tags), np.array(hv_tags)

    def crop_area(
        self, im, polys, tags, hv_tags, txts, crop_background=False, max_tries=25
    ):
        """
        make random crop from the input image
        :param im:
        :param polys:  [b,4,2]
        :param tags:
        :param crop_background:
        :param max_tries: 50 -> 25
        :return:
        """
        h, w, _ = im.shape
        pad_h = h // 10
        pad_w = w // 10
        h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
        w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
        for poly in polys:
            poly = np.round(poly, decimals=0).astype(np.int32)
            minx = np.min(poly[:, 0])
            maxx = np.max(poly[:, 0])
            w_array[minx + pad_w : maxx + pad_w] = 1
            miny = np.min(poly[:, 1])
            maxy = np.max(poly[:, 1])
            h_array[miny + pad_h : maxy + pad_h] = 1
        # ensure the cropped area not across a text
        h_axis = np.where(h_array == 0)[0]
        w_axis = np.where(w_array == 0)[0]
        if len(h_axis) == 0 or len(w_axis) == 0:
            return im, polys, tags, hv_tags, txts
        for i in range(max_tries):
            xx = np.random.choice(w_axis, size=2)
            xmin = np.min(xx) - pad_w
            xmax = np.max(xx) - pad_w
            xmin = np.clip(xmin, 0, w - 1)
            xmax = np.clip(xmax, 0, w - 1)
            yy = np.random.choice(h_axis, size=2)
            ymin = np.min(yy) - pad_h
            ymax = np.max(yy) - pad_h
            ymin = np.clip(ymin, 0, h - 1)
            ymax = np.clip(ymax, 0, h - 1)
            if xmax - xmin < self.min_crop_size or ymax - ymin < self.min_crop_size:
                continue
            if polys.shape[0] != 0:
                poly_axis_in_area = (
                    (polys[:, :, 0] >= xmin)
                    & (polys[:, :, 0] <= xmax)
                    & (polys[:, :, 1] >= ymin)
                    & (polys[:, :, 1] <= ymax)
                )
                selected_polys = np.where(np.sum(poly_axis_in_area, axis=1) == 4)[0]
            else:
                selected_polys = []
            if len(selected_polys) == 0:
                # no text in this area
                if crop_background:
                    txts_tmp = []
                    for selected_poly in selected_polys:
                        txts_tmp.append(txts[selected_poly])
                    txts = txts_tmp
                    return (
                        im[ymin : ymax + 1, xmin : xmax + 1, :],
                        polys[selected_polys],
                        tags[selected_polys],
                        hv_tags[selected_polys],
                        txts,
                    )
                else:
                    continue
            im = im[ymin : ymax + 1, xmin : xmax + 1, :]
            polys = polys[selected_polys]
            tags = tags[selected_polys]
            hv_tags = hv_tags[selected_polys]
            txts_tmp = []
            for selected_poly in selected_polys:
                txts_tmp.append(txts[selected_poly])
            txts = txts_tmp
            polys[:, :, 0] -= xmin
            polys[:, :, 1] -= ymin
            return im, polys, tags, hv_tags, txts

        return im, polys, tags, hv_tags, txts

    def fit_and_gather_tcl_points_v2(
        self,
        min_area_quad,
        poly,
        max_h,
        max_w,
        fixed_point_num=64,
        img_id=0,
        reference_height=3,
    ):
        """
        Find the center point of poly as key_points, then fit and gather.
        """
        key_point_xys = []
        point_num = poly.shape[0]
        for idx in range(point_num // 2):
            center_point = (poly[idx] + poly[point_num - 1 - idx]) / 2.0
            key_point_xys.append(center_point)

        tmp_image = np.zeros(
            shape=(
                max_h,
                max_w,
            ),
            dtype="float32",
        )
        cv2.polylines(tmp_image, [np.array(key_point_xys).astype("int32")], False, 1.0)
        ys, xs = np.where(tmp_image > 0)
        xy_text = np.array(list(zip(xs, ys)), dtype="float32")

        left_center_pt = ((min_area_quad[0] - min_area_quad[1]) / 2.0).reshape(1, 2)
        right_center_pt = ((min_area_quad[1] - min_area_quad[2]) / 2.0).reshape(1, 2)
        proj_unit_vec = (right_center_pt - left_center_pt) / (
            np.linalg.norm(right_center_pt - left_center_pt) + 1e-6
        )
        proj_unit_vec_tile = np.tile(proj_unit_vec, (xy_text.shape[0], 1))  # (n, 2)
        left_center_pt_tile = np.tile(left_center_pt, (xy_text.shape[0], 1))  # (n, 2)
        xy_text_to_left_center = xy_text - left_center_pt_tile
        proj_value = np.sum(xy_text_to_left_center * proj_unit_vec_tile, axis=1)
        xy_text = xy_text[np.argsort(proj_value)]

        # convert to np and keep the num of point not greater then fixed_point_num
        pos_info = np.array(xy_text).reshape(-1, 2)[:, ::-1]  # xy-> yx
        point_num = len(pos_info)
        if point_num > fixed_point_num:
            keep_ids = [
                int((point_num * 1.0 / fixed_point_num) * x)
                for x in range(fixed_point_num)
            ]
            pos_info = pos_info[keep_ids, :]

        keep = int(min(len(pos_info), fixed_point_num))
        if np.random.rand() < 0.2 and reference_height >= 3:
            dl = (np.random.rand(keep) - 0.5) * reference_height * 0.3
            random_float = np.array([1, 0]).reshape([1, 2]) * dl.reshape([keep, 1])
            pos_info += random_float
            pos_info[:, 0] = np.clip(pos_info[:, 0], 0, max_h - 1)
            pos_info[:, 1] = np.clip(pos_info[:, 1], 0, max_w - 1)

        # padding to fixed length
        pos_l = np.zeros((self.tcl_len, 3), dtype=np.int32)
        pos_l[:, 0] = np.ones((self.tcl_len,)) * img_id
        pos_m = np.zeros((self.tcl_len, 1), dtype=np.float32)
        pos_l[:keep, 1:] = np.round(pos_info).astype(np.int32)
        pos_m[:keep] = 1.0
        return pos_l, pos_m

    def generate_direction_map(self, poly_quads, n_char, direction_map):
        """ """
        width_list = []
        height_list = []
        for quad in poly_quads:
            quad_w = (
                np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3])
            ) / 2.0
            quad_h = (
                np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[2] - quad[1])
            ) / 2.0
            width_list.append(quad_w)
            height_list.append(quad_h)
        norm_width = max(sum(width_list) / n_char, 1.0)
        average_height = max(sum(height_list) / len(height_list), 1.0)
        k = 1
        for quad in poly_quads:
            direct_vector_full = ((quad[1] + quad[2]) - (quad[0] + quad[3])) / 2.0
            direct_vector = (
                direct_vector_full
                / (np.linalg.norm(direct_vector_full) + 1e-6)
                * norm_width
            )
            direction_label = tuple(
                map(float, [direct_vector[0], direct_vector[1], 1.0 / average_height])
            )
            cv2.fillPoly(
                direction_map,
                quad.round().astype(np.int32)[np.newaxis, :, :],
                direction_label,
            )
            k += 1
        return direction_map

    def calculate_average_height(self, poly_quads):
        """ """
        height_list = []
        for quad in poly_quads:
            quad_h = (
                np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[2] - quad[1])
            ) / 2.0
            height_list.append(quad_h)
        average_height = max(sum(height_list) / len(height_list), 1.0)
        return average_height

    def generate_tcl_ctc_label(
        self,
        h,
        w,
        polys,
        tags,
        text_strs,
        ds_ratio,
        tcl_ratio=0.3,
        shrink_ratio_of_width=0.15,
    ):
        """
        Generate polygon.
        """
        score_map_big = np.zeros(
            (
                h,
                w,
            ),
            dtype=np.float32,
        )
        h, w = int(h * ds_ratio), int(w * ds_ratio)
        polys = polys * ds_ratio

        score_map = np.zeros(
            (
                h,
                w,
            ),
            dtype=np.float32,
        )
        score_label_map = np.zeros(
            (
                h,
                w,
            ),
            dtype=np.float32,
        )
        tbo_map = np.zeros((h, w, 5), dtype=np.float32)
        training_mask = np.ones(
            (
                h,
                w,
            ),
            dtype=np.float32,
        )
        direction_map = np.ones((h, w, 3)) * np.array([0, 0, 1]).reshape(
            [1, 1, 3]
        ).astype(np.float32)

        label_idx = 0
        score_label_map_text_label_list = []
        pos_list, pos_mask, label_list = [], [], []
        for poly_idx, poly_tag in enumerate(zip(polys, tags)):
            poly = poly_tag[0]
            tag = poly_tag[1]

            # generate min_area_quad
            min_area_quad, center_point = self.gen_min_area_quad_from_poly(poly)
            min_area_quad_h = 0.5 * (
                np.linalg.norm(min_area_quad[0] - min_area_quad[3])
                + np.linalg.norm(min_area_quad[1] - min_area_quad[2])
            )
            min_area_quad_w = 0.5 * (
                np.linalg.norm(min_area_quad[0] - min_area_quad[1])
                + np.linalg.norm(min_area_quad[2] - min_area_quad[3])
            )

            if (
                min(min_area_quad_h, min_area_quad_w) < self.min_text_size * ds_ratio
                or min(min_area_quad_h, min_area_quad_w) > self.max_text_size * ds_ratio
            ):
                continue

            if tag:
                cv2.fillPoly(
                    training_mask, poly.astype(np.int32)[np.newaxis, :, :], 0.15
                )
            else:
                text_label = text_strs[poly_idx]
                text_label = self.prepare_text_label(text_label, self.Lexicon_Table)

                text_label_index_list = [
                    [self.Lexicon_Table.index(c_)]
                    for c_ in text_label
                    if c_ in self.Lexicon_Table
                ]
                if len(text_label_index_list) < 1:
                    continue

                tcl_poly = self.poly2tcl(poly, tcl_ratio)
                tcl_quads = self.poly2quads(tcl_poly)
                poly_quads = self.poly2quads(poly)

                stcl_quads, quad_index = self.shrink_poly_along_width(
                    tcl_quads,
                    shrink_ratio_of_width=shrink_ratio_of_width,
                    expand_height_ratio=1.0 / tcl_ratio,
                )

                cv2.fillPoly(score_map, np.round(stcl_quads).astype(np.int32), 1.0)
                cv2.fillPoly(
                    score_map_big, np.round(stcl_quads / ds_ratio).astype(np.int32), 1.0
                )

                for idx, quad in enumerate(stcl_quads):
                    quad_mask = np.zeros((h, w), dtype=np.float32)
                    quad_mask = cv2.fillPoly(
                        quad_mask,
                        np.round(quad[np.newaxis, :, :]).astype(np.int32),
                        1.0,
                    )
                    tbo_map = self.gen_quad_tbo(
                        poly_quads[quad_index[idx]], quad_mask, tbo_map
                    )

                # score label map and score_label_map_text_label_list for refine
                if label_idx == 0:
                    text_pos_list_ = [
                        [len(self.Lexicon_Table)],
                    ]
                    score_label_map_text_label_list.append(text_pos_list_)

                label_idx += 1
                cv2.fillPoly(
                    score_label_map, np.round(poly_quads).astype(np.int32), label_idx
                )
                score_label_map_text_label_list.append(text_label_index_list)

                # direction info, fix-me
                n_char = len(text_label_index_list)
                direction_map = self.generate_direction_map(
                    poly_quads, n_char, direction_map
                )

                # pos info
                average_shrink_height = self.calculate_average_height(stcl_quads)
                pos_l, pos_m = self.fit_and_gather_tcl_points_v2(
                    min_area_quad,
                    poly,
                    max_h=h,
                    max_w=w,
                    fixed_point_num=64,
                    img_id=self.img_id,
                    reference_height=average_shrink_height,
                )

                label_l = text_label_index_list
                if len(text_label_index_list) < 2:
                    continue

                pos_list.append(pos_l)
                pos_mask.append(pos_m)
                label_list.append(label_l)

        # use big score_map for smooth tcl lines
        score_map_big_resized = cv2.resize(
            score_map_big, dsize=None, fx=ds_ratio, fy=ds_ratio
        )
        score_map = np.array(score_map_big_resized > 1e-3, dtype="float32")

        return (
            score_map,
            score_label_map,
            tbo_map,
            direction_map,
            training_mask,
            pos_list,
            pos_mask,
            label_list,
            score_label_map_text_label_list,
        )

    def adjust_point(self, poly):
        """
        adjust point order.
        """
        point_num = poly.shape[0]
        if point_num == 4:
            len_1 = np.linalg.norm(poly[0] - poly[1])
            len_2 = np.linalg.norm(poly[1] - poly[2])
            len_3 = np.linalg.norm(poly[2] - poly[3])
            len_4 = np.linalg.norm(poly[3] - poly[0])

            if (len_1 + len_3) * 1.5 < (len_2 + len_4):
                poly = poly[[1, 2, 3, 0], :]

        elif point_num > 4:
            vector_1 = poly[0] - poly[1]
            vector_2 = poly[1] - poly[2]
            cos_theta = np.dot(vector_1, vector_2) / (
                np.linalg.norm(vector_1) * np.linalg.norm(vector_2) + 1e-6
            )
            theta = np.arccos(np.round(cos_theta, decimals=4))

            if abs(theta) > (70 / 180 * math.pi):
                index = list(range(1, point_num)) + [0]
                poly = poly[np.array(index), :]
        return poly

    def gen_min_area_quad_from_poly(self, poly):
        """
        Generate min area quad from poly.
        """
        point_num = poly.shape[0]
        min_area_quad = np.zeros((4, 2), dtype=np.float32)
        if point_num == 4:
            min_area_quad = poly
            center_point = np.sum(poly, axis=0) / 4
        else:
            rect = cv2.minAreaRect(
                poly.astype(np.int32)
            )  # (center (x,y), (width, height), angle of rotation)
            center_point = rect[0]
            box = np.array(cv2.boxPoints(rect))

            first_point_idx = 0
            min_dist = 1e4
            for i in range(4):
                dist = (
                    np.linalg.norm(box[(i + 0) % 4] - poly[0])
                    + np.linalg.norm(box[(i + 1) % 4] - poly[point_num // 2 - 1])
                    + np.linalg.norm(box[(i + 2) % 4] - poly[point_num // 2])
                    + np.linalg.norm(box[(i + 3) % 4] - poly[-1])
                )
                if dist < min_dist:
                    min_dist = dist
                    first_point_idx = i

            for i in range(4):
                min_area_quad[i] = box[(first_point_idx + i) % 4]

        return min_area_quad, center_point

    def shrink_quad_along_width(self, quad, begin_width_ratio=0.0, end_width_ratio=1.0):
        """
        Generate shrink_quad_along_width.
        """
        ratio_pair = np.array(
            [[begin_width_ratio], [end_width_ratio]], dtype=np.float32
        )
        p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
        p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
        return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])

    def shrink_poly_along_width(
        self, quads, shrink_ratio_of_width, expand_height_ratio=1.0
    ):
        """
        shrink poly with given length.
        """
        upper_edge_list = []

        def get_cut_info(edge_len_list, cut_len):
            for idx, edge_len in enumerate(edge_len_list):
                cut_len -= edge_len
                if cut_len <= 0.000001:
                    ratio = (cut_len + edge_len_list[idx]) / edge_len_list[idx]
                    return idx, ratio

        for quad in quads:
            upper_edge_len = np.linalg.norm(quad[0] - quad[1])
            upper_edge_list.append(upper_edge_len)

        # length of left edge and right edge.
        left_length = np.linalg.norm(quads[0][0] - quads[0][3]) * expand_height_ratio
        right_length = np.linalg.norm(quads[-1][1] - quads[-1][2]) * expand_height_ratio

        shrink_length = (
            min(left_length, right_length, sum(upper_edge_list)) * shrink_ratio_of_width
        )
        # shrinking length
        upper_len_left = shrink_length
        upper_len_right = sum(upper_edge_list) - shrink_length

        left_idx, left_ratio = get_cut_info(upper_edge_list, upper_len_left)
        left_quad = self.shrink_quad_along_width(
            quads[left_idx], begin_width_ratio=left_ratio, end_width_ratio=1
        )
        right_idx, right_ratio = get_cut_info(upper_edge_list, upper_len_right)
        right_quad = self.shrink_quad_along_width(
            quads[right_idx], begin_width_ratio=0, end_width_ratio=right_ratio
        )

        out_quad_list = []
        if left_idx == right_idx:
            out_quad_list.append(
                [left_quad[0], right_quad[1], right_quad[2], left_quad[3]]
            )
        else:
            out_quad_list.append(left_quad)
            for idx in range(left_idx + 1, right_idx):
                out_quad_list.append(quads[idx])
            out_quad_list.append(right_quad)

        return np.array(out_quad_list), list(range(left_idx, right_idx + 1))

    def prepare_text_label(self, label_str, Lexicon_Table):
        """
        Prepare text lablel by given Lexicon_Table.
        """
        if len(Lexicon_Table) == 36:
            return label_str.lower()
        else:
            return label_str

    def vector_angle(self, A, B):
        """
        Calculate the angle between vector AB and x-axis positive direction.
        """
        AB = np.array([B[1] - A[1], B[0] - A[0]])
        return np.arctan2(*AB)

    def theta_line_cross_point(self, theta, point):
        """
        Calculate the line through given point and angle in ax + by + c =0 form.
        """
        x, y = point
        cos = np.cos(theta)
        sin = np.sin(theta)
        return [sin, -cos, cos * y - sin * x]

    def line_cross_two_point(self, A, B):
        """
        Calculate the line through given point A and B in ax + by + c =0 form.
        """
        angle = self.vector_angle(A, B)
        return self.theta_line_cross_point(angle, A)

    def average_angle(self, poly):
        """
        Calculate the average angle between left and right edge in given poly.
        """
        p0, p1, p2, p3 = poly
        angle30 = self.vector_angle(p3, p0)
        angle21 = self.vector_angle(p2, p1)
        return (angle30 + angle21) / 2

    def line_cross_point(self, line1, line2):
        """
        line1 and line2 in  0=ax+by+c form, compute the cross point of line1 and line2
        """
        a1, b1, c1 = line1
        a2, b2, c2 = line2
        d = a1 * b2 - a2 * b1

        if d == 0:
            print("Cross point does not exist")
            return np.array([0, 0], dtype=np.float32)
        else:
            x = (b1 * c2 - b2 * c1) / d
            y = (a2 * c1 - a1 * c2) / d

        return np.array([x, y], dtype=np.float32)

    def quad2tcl(self, poly, ratio):
        """
        Generate center line by poly clock-wise point. (4, 2)
        """
        ratio_pair = np.array([[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
        p0_3 = poly[0] + (poly[3] - poly[0]) * ratio_pair
        p1_2 = poly[1] + (poly[2] - poly[1]) * ratio_pair
        return np.array([p0_3[0], p1_2[0], p1_2[1], p0_3[1]])

    def poly2tcl(self, poly, ratio):
        """
        Generate center line by poly clock-wise point.
        """
        ratio_pair = np.array([[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
        tcl_poly = np.zeros_like(poly)
        point_num = poly.shape[0]

        for idx in range(point_num // 2):
            point_pair = (
                poly[idx] + (poly[point_num - 1 - idx] - poly[idx]) * ratio_pair
            )
            tcl_poly[idx] = point_pair[0]
            tcl_poly[point_num - 1 - idx] = point_pair[1]
        return tcl_poly

    def gen_quad_tbo(self, quad, tcl_mask, tbo_map):
        """
        Generate tbo_map for give quad.
        """
        # upper and lower line function: ax + by + c = 0;
        up_line = self.line_cross_two_point(quad[0], quad[1])
        lower_line = self.line_cross_two_point(quad[3], quad[2])

        quad_h = 0.5 * (
            np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] - quad[2])
        )
        quad_w = 0.5 * (
            np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3])
        )

        # average angle of left and right line.
        angle = self.average_angle(quad)

        xy_in_poly = np.argwhere(tcl_mask == 1)
        for y, x in xy_in_poly:
            point = (x, y)
            line = self.theta_line_cross_point(angle, point)
            cross_point_upper = self.line_cross_point(up_line, line)
            cross_point_lower = self.line_cross_point(lower_line, line)
            ##FIX, offset reverse
            upper_offset_x, upper_offset_y = cross_point_upper - point
            lower_offset_x, lower_offset_y = cross_point_lower - point
            tbo_map[y, x, 0] = upper_offset_y
            tbo_map[y, x, 1] = upper_offset_x
            tbo_map[y, x, 2] = lower_offset_y
            tbo_map[y, x, 3] = lower_offset_x
            tbo_map[y, x, 4] = 1.0 / max(min(quad_h, quad_w), 1.0) * 2
        return tbo_map

    def poly2quads(self, poly):
        """
        Split poly into quads.
        """
        quad_list = []
        point_num = poly.shape[0]

        # point pair
        point_pair_list = []
        for idx in range(point_num // 2):
            point_pair = [poly[idx], poly[point_num - 1 - idx]]
            point_pair_list.append(point_pair)

        quad_num = point_num // 2 - 1
        for idx in range(quad_num):
            # reshape and adjust to clock-wise
            quad_list.append(
                (np.array(point_pair_list)[[idx, idx + 1]]).reshape(4, 2)[[0, 2, 3, 1]]
            )

        return np.array(quad_list)

    def rotate_im_poly(self, im, text_polys):
        """
        rotate image with 90 / 180 / 270 degre
        """
        im_w, im_h = im.shape[1], im.shape[0]
        dst_im = im.copy()
        dst_polys = []
        rand_degree_ratio = np.random.rand()
        rand_degree_cnt = 1
        if rand_degree_ratio > 0.5:
            rand_degree_cnt = 3
        for i in range(rand_degree_cnt):
            dst_im = np.rot90(dst_im)
        rot_degree = -90 * rand_degree_cnt
        rot_angle = rot_degree * math.pi / 180.0
        n_poly = text_polys.shape[0]
        cx, cy = 0.5 * im_w, 0.5 * im_h
        ncx, ncy = 0.5 * dst_im.shape[1], 0.5 * dst_im.shape[0]
        for i in range(n_poly):
            wordBB = text_polys[i]
            poly = []
            for j in range(4):  # 16->4
                sx, sy = wordBB[j][0], wordBB[j][1]
                dx = (
                    math.cos(rot_angle) * (sx - cx)
                    - math.sin(rot_angle) * (sy - cy)
                    + ncx
                )
                dy = (
                    math.sin(rot_angle) * (sx - cx)
                    + math.cos(rot_angle) * (sy - cy)
                    + ncy
                )
                poly.append([dx, dy])
            dst_polys.append(poly)
        return dst_im, np.array(dst_polys, dtype=np.float32)

    def __call__(self, data):
        input_size = 512
        im = data["image"]
        text_polys = data["polys"]
        text_tags = data["ignore_tags"]
        text_strs = data["texts"]
        h, w, _ = im.shape
        text_polys, text_tags, hv_tags = self.check_and_validate_polys(
            text_polys, text_tags, (h, w)
        )
        if text_polys.shape[0] <= 0:
            return None
        # set aspect ratio and keep area fix
        asp_scales = np.arange(1.0, 1.55, 0.1)
        asp_scale = np.random.choice(asp_scales)
        if np.random.rand() < 0.5:
            asp_scale = 1.0 / asp_scale
        asp_scale = math.sqrt(asp_scale)

        asp_wx = asp_scale
        asp_hy = 1.0 / asp_scale
        im = cv2.resize(im, dsize=None, fx=asp_wx, fy=asp_hy)
        text_polys[:, :, 0] *= asp_wx
        text_polys[:, :, 1] *= asp_hy

        h, w, _ = im.shape
        if max(h, w) > 2048:
            rd_scale = 2048.0 / max(h, w)
            im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale)
            text_polys *= rd_scale
        h, w, _ = im.shape
        if min(h, w) < 16:
            return None

        # no background
        im, text_polys, text_tags, hv_tags, text_strs = self.crop_area(
            im, text_polys, text_tags, hv_tags, text_strs, crop_background=False
        )

        if text_polys.shape[0] == 0:
            return None
        # # continue for all ignore case
        if np.sum((text_tags * 1.0)) >= text_tags.size:
            return None
        new_h, new_w, _ = im.shape
        if (new_h is None) or (new_w is None):
            return None
        # resize image
        std_ratio = float(input_size) / max(new_w, new_h)
        rand_scales = np.array(
            [0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0, 1.0, 1.0, 1.0, 1.0]
        )
        rz_scale = std_ratio * np.random.choice(rand_scales)
        im = cv2.resize(im, dsize=None, fx=rz_scale, fy=rz_scale)
        text_polys[:, :, 0] *= rz_scale
        text_polys[:, :, 1] *= rz_scale

        # add gaussian blur
        if np.random.rand() < 0.1 * 0.5:
            ks = np.random.permutation(5)[0] + 1
            ks = int(ks / 2) * 2 + 1
            im = cv2.GaussianBlur(im, ksize=(ks, ks), sigmaX=0, sigmaY=0)
        # add brighter
        if np.random.rand() < 0.1 * 0.5:
            im = im * (1.0 + np.random.rand() * 0.5)
            im = np.clip(im, 0.0, 255.0)
        # add darker
        if np.random.rand() < 0.1 * 0.5:
            im = im * (1.0 - np.random.rand() * 0.5)
            im = np.clip(im, 0.0, 255.0)

        # Padding the im to [input_size, input_size]
        new_h, new_w, _ = im.shape
        if min(new_w, new_h) < input_size * 0.5:
            return None
        im_padded = np.ones((input_size, input_size, 3), dtype=np.float32)
        im_padded[:, :, 2] = 0.485 * 255
        im_padded[:, :, 1] = 0.456 * 255
        im_padded[:, :, 0] = 0.406 * 255

        # Random the start position
        del_h = input_size - new_h
        del_w = input_size - new_w
        sh, sw = 0, 0
        if del_h > 1:
            sh = int(np.random.rand() * del_h)
        if del_w > 1:
            sw = int(np.random.rand() * del_w)

        # Padding
        im_padded[sh : sh + new_h, sw : sw + new_w, :] = im.copy()
        text_polys[:, :, 0] += sw
        text_polys[:, :, 1] += sh

        (
            score_map,
            score_label_map,
            border_map,
            direction_map,
            training_mask,
            pos_list,
            pos_mask,
            label_list,
            score_label_map_text_label,
        ) = self.generate_tcl_ctc_label(
            input_size, input_size, text_polys, text_tags, text_strs, 0.25
        )
        if len(label_list) <= 0:  # eliminate negative samples
            return None
        pos_list_temp = np.zeros([64, 3])
        pos_mask_temp = np.zeros([64, 1])
        label_list_temp = np.zeros([self.max_text_length, 1]) + self.pad_num

        for i, label in enumerate(label_list):
            n = len(label)
            if n > self.max_text_length:
                label_list[i] = label[: self.max_text_length]
                continue
            while n < self.max_text_length:
                label.append([self.pad_num])
                n += 1

        for i in range(len(label_list)):
            label_list[i] = np.array(label_list[i])

        if len(pos_list) <= 0 or len(pos_list) > self.max_text_nums:
            return None
        for __ in range(self.max_text_nums - len(pos_list), 0, -1):
            pos_list.append(pos_list_temp)
            pos_mask.append(pos_mask_temp)
            label_list.append(label_list_temp)

        if self.img_id == self.batch_size - 1:
            self.img_id = 0
        else:
            self.img_id += 1

        im_padded[:, :, 2] -= 0.485 * 255
        im_padded[:, :, 1] -= 0.456 * 255
        im_padded[:, :, 0] -= 0.406 * 255
        im_padded[:, :, 2] /= 255.0 * 0.229
        im_padded[:, :, 1] /= 255.0 * 0.224
        im_padded[:, :, 0] /= 255.0 * 0.225
        im_padded = im_padded.transpose((2, 0, 1))
        images = im_padded[::-1, :, :]
        tcl_maps = score_map[np.newaxis, :, :]
        tcl_label_maps = score_label_map[np.newaxis, :, :]
        border_maps = border_map.transpose((2, 0, 1))
        direction_maps = direction_map.transpose((2, 0, 1))
        training_masks = training_mask[np.newaxis, :, :]
        pos_list = np.array(pos_list)
        pos_mask = np.array(pos_mask)
        label_list = np.array(label_list)
        data["images"] = images
        data["tcl_maps"] = tcl_maps
        data["tcl_label_maps"] = tcl_label_maps
        data["border_maps"] = border_maps
        data["direction_maps"] = direction_maps
        data["training_masks"] = training_masks
        data["label_list"] = label_list
        data["pos_list"] = pos_list
        data["pos_mask"] = pos_mask
        return data