Spaces:
Runtime error
Runtime error
File size: 34,343 Bytes
fc8c192 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 |
import math
import cv2
import numpy as np
__all__ = ["PGProcessTrain"]
class PGProcessTrain(object):
def __init__(
self,
character_dict_path,
max_text_length,
max_text_nums,
tcl_len,
batch_size=14,
min_crop_size=24,
min_text_size=4,
max_text_size=512,
**kwargs
):
self.tcl_len = tcl_len
self.max_text_length = max_text_length
self.max_text_nums = max_text_nums
self.batch_size = batch_size
self.min_crop_size = min_crop_size
self.min_text_size = min_text_size
self.max_text_size = max_text_size
self.Lexicon_Table = self.get_dict(character_dict_path)
self.pad_num = len(self.Lexicon_Table)
self.img_id = 0
def get_dict(self, character_dict_path):
character_str = ""
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
line = line.decode("utf-8").strip("\n").strip("\r\n")
character_str += line
dict_character = list(character_str)
return dict_character
def quad_area(self, poly):
"""
compute area of a polygon
:param poly:
:return:
"""
edge = [
(poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),
(poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),
(poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),
(poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1]),
]
return np.sum(edge) / 2.0
def gen_quad_from_poly(self, poly):
"""
Generate min area quad from poly.
"""
point_num = poly.shape[0]
min_area_quad = np.zeros((4, 2), dtype=np.float32)
rect = cv2.minAreaRect(
poly.astype(np.int32)
) # (center (x,y), (width, height), angle of rotation)
box = np.array(cv2.boxPoints(rect))
first_point_idx = 0
min_dist = 1e4
for i in range(4):
dist = (
np.linalg.norm(box[(i + 0) % 4] - poly[0])
+ np.linalg.norm(box[(i + 1) % 4] - poly[point_num // 2 - 1])
+ np.linalg.norm(box[(i + 2) % 4] - poly[point_num // 2])
+ np.linalg.norm(box[(i + 3) % 4] - poly[-1])
)
if dist < min_dist:
min_dist = dist
first_point_idx = i
for i in range(4):
min_area_quad[i] = box[(first_point_idx + i) % 4]
return min_area_quad
def check_and_validate_polys(self, polys, tags, im_size):
"""
check so that the text poly is in the same direction,
and also filter some invalid polygons
:param polys:
:param tags:
:return:
"""
(h, w) = im_size
if polys.shape[0] == 0:
return polys, np.array([]), np.array([])
polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1)
polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h - 1)
validated_polys = []
validated_tags = []
hv_tags = []
for poly, tag in zip(polys, tags):
quad = self.gen_quad_from_poly(poly)
p_area = self.quad_area(quad)
if abs(p_area) < 1:
print("invalid poly")
continue
if p_area > 0:
if tag == False:
print("poly in wrong direction")
tag = True # reversed cases should be ignore
poly = poly[(0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1), :]
quad = quad[(0, 3, 2, 1), :]
len_w = np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(
quad[3] - quad[2]
)
len_h = np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(
quad[1] - quad[2]
)
hv_tag = 1
if len_w * 2.0 < len_h:
hv_tag = 0
validated_polys.append(poly)
validated_tags.append(tag)
hv_tags.append(hv_tag)
return np.array(validated_polys), np.array(validated_tags), np.array(hv_tags)
def crop_area(
self, im, polys, tags, hv_tags, txts, crop_background=False, max_tries=25
):
"""
make random crop from the input image
:param im:
:param polys: [b,4,2]
:param tags:
:param crop_background:
:param max_tries: 50 -> 25
:return:
"""
h, w, _ = im.shape
pad_h = h // 10
pad_w = w // 10
h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
for poly in polys:
poly = np.round(poly, decimals=0).astype(np.int32)
minx = np.min(poly[:, 0])
maxx = np.max(poly[:, 0])
w_array[minx + pad_w : maxx + pad_w] = 1
miny = np.min(poly[:, 1])
maxy = np.max(poly[:, 1])
h_array[miny + pad_h : maxy + pad_h] = 1
# ensure the cropped area not across a text
h_axis = np.where(h_array == 0)[0]
w_axis = np.where(w_array == 0)[0]
if len(h_axis) == 0 or len(w_axis) == 0:
return im, polys, tags, hv_tags, txts
for i in range(max_tries):
xx = np.random.choice(w_axis, size=2)
xmin = np.min(xx) - pad_w
xmax = np.max(xx) - pad_w
xmin = np.clip(xmin, 0, w - 1)
xmax = np.clip(xmax, 0, w - 1)
yy = np.random.choice(h_axis, size=2)
ymin = np.min(yy) - pad_h
ymax = np.max(yy) - pad_h
ymin = np.clip(ymin, 0, h - 1)
ymax = np.clip(ymax, 0, h - 1)
if xmax - xmin < self.min_crop_size or ymax - ymin < self.min_crop_size:
continue
if polys.shape[0] != 0:
poly_axis_in_area = (
(polys[:, :, 0] >= xmin)
& (polys[:, :, 0] <= xmax)
& (polys[:, :, 1] >= ymin)
& (polys[:, :, 1] <= ymax)
)
selected_polys = np.where(np.sum(poly_axis_in_area, axis=1) == 4)[0]
else:
selected_polys = []
if len(selected_polys) == 0:
# no text in this area
if crop_background:
txts_tmp = []
for selected_poly in selected_polys:
txts_tmp.append(txts[selected_poly])
txts = txts_tmp
return (
im[ymin : ymax + 1, xmin : xmax + 1, :],
polys[selected_polys],
tags[selected_polys],
hv_tags[selected_polys],
txts,
)
else:
continue
im = im[ymin : ymax + 1, xmin : xmax + 1, :]
polys = polys[selected_polys]
tags = tags[selected_polys]
hv_tags = hv_tags[selected_polys]
txts_tmp = []
for selected_poly in selected_polys:
txts_tmp.append(txts[selected_poly])
txts = txts_tmp
polys[:, :, 0] -= xmin
polys[:, :, 1] -= ymin
return im, polys, tags, hv_tags, txts
return im, polys, tags, hv_tags, txts
def fit_and_gather_tcl_points_v2(
self,
min_area_quad,
poly,
max_h,
max_w,
fixed_point_num=64,
img_id=0,
reference_height=3,
):
"""
Find the center point of poly as key_points, then fit and gather.
"""
key_point_xys = []
point_num = poly.shape[0]
for idx in range(point_num // 2):
center_point = (poly[idx] + poly[point_num - 1 - idx]) / 2.0
key_point_xys.append(center_point)
tmp_image = np.zeros(
shape=(
max_h,
max_w,
),
dtype="float32",
)
cv2.polylines(tmp_image, [np.array(key_point_xys).astype("int32")], False, 1.0)
ys, xs = np.where(tmp_image > 0)
xy_text = np.array(list(zip(xs, ys)), dtype="float32")
left_center_pt = ((min_area_quad[0] - min_area_quad[1]) / 2.0).reshape(1, 2)
right_center_pt = ((min_area_quad[1] - min_area_quad[2]) / 2.0).reshape(1, 2)
proj_unit_vec = (right_center_pt - left_center_pt) / (
np.linalg.norm(right_center_pt - left_center_pt) + 1e-6
)
proj_unit_vec_tile = np.tile(proj_unit_vec, (xy_text.shape[0], 1)) # (n, 2)
left_center_pt_tile = np.tile(left_center_pt, (xy_text.shape[0], 1)) # (n, 2)
xy_text_to_left_center = xy_text - left_center_pt_tile
proj_value = np.sum(xy_text_to_left_center * proj_unit_vec_tile, axis=1)
xy_text = xy_text[np.argsort(proj_value)]
# convert to np and keep the num of point not greater then fixed_point_num
pos_info = np.array(xy_text).reshape(-1, 2)[:, ::-1] # xy-> yx
point_num = len(pos_info)
if point_num > fixed_point_num:
keep_ids = [
int((point_num * 1.0 / fixed_point_num) * x)
for x in range(fixed_point_num)
]
pos_info = pos_info[keep_ids, :]
keep = int(min(len(pos_info), fixed_point_num))
if np.random.rand() < 0.2 and reference_height >= 3:
dl = (np.random.rand(keep) - 0.5) * reference_height * 0.3
random_float = np.array([1, 0]).reshape([1, 2]) * dl.reshape([keep, 1])
pos_info += random_float
pos_info[:, 0] = np.clip(pos_info[:, 0], 0, max_h - 1)
pos_info[:, 1] = np.clip(pos_info[:, 1], 0, max_w - 1)
# padding to fixed length
pos_l = np.zeros((self.tcl_len, 3), dtype=np.int32)
pos_l[:, 0] = np.ones((self.tcl_len,)) * img_id
pos_m = np.zeros((self.tcl_len, 1), dtype=np.float32)
pos_l[:keep, 1:] = np.round(pos_info).astype(np.int32)
pos_m[:keep] = 1.0
return pos_l, pos_m
def generate_direction_map(self, poly_quads, n_char, direction_map):
""" """
width_list = []
height_list = []
for quad in poly_quads:
quad_w = (
np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3])
) / 2.0
quad_h = (
np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[2] - quad[1])
) / 2.0
width_list.append(quad_w)
height_list.append(quad_h)
norm_width = max(sum(width_list) / n_char, 1.0)
average_height = max(sum(height_list) / len(height_list), 1.0)
k = 1
for quad in poly_quads:
direct_vector_full = ((quad[1] + quad[2]) - (quad[0] + quad[3])) / 2.0
direct_vector = (
direct_vector_full
/ (np.linalg.norm(direct_vector_full) + 1e-6)
* norm_width
)
direction_label = tuple(
map(float, [direct_vector[0], direct_vector[1], 1.0 / average_height])
)
cv2.fillPoly(
direction_map,
quad.round().astype(np.int32)[np.newaxis, :, :],
direction_label,
)
k += 1
return direction_map
def calculate_average_height(self, poly_quads):
""" """
height_list = []
for quad in poly_quads:
quad_h = (
np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[2] - quad[1])
) / 2.0
height_list.append(quad_h)
average_height = max(sum(height_list) / len(height_list), 1.0)
return average_height
def generate_tcl_ctc_label(
self,
h,
w,
polys,
tags,
text_strs,
ds_ratio,
tcl_ratio=0.3,
shrink_ratio_of_width=0.15,
):
"""
Generate polygon.
"""
score_map_big = np.zeros(
(
h,
w,
),
dtype=np.float32,
)
h, w = int(h * ds_ratio), int(w * ds_ratio)
polys = polys * ds_ratio
score_map = np.zeros(
(
h,
w,
),
dtype=np.float32,
)
score_label_map = np.zeros(
(
h,
w,
),
dtype=np.float32,
)
tbo_map = np.zeros((h, w, 5), dtype=np.float32)
training_mask = np.ones(
(
h,
w,
),
dtype=np.float32,
)
direction_map = np.ones((h, w, 3)) * np.array([0, 0, 1]).reshape(
[1, 1, 3]
).astype(np.float32)
label_idx = 0
score_label_map_text_label_list = []
pos_list, pos_mask, label_list = [], [], []
for poly_idx, poly_tag in enumerate(zip(polys, tags)):
poly = poly_tag[0]
tag = poly_tag[1]
# generate min_area_quad
min_area_quad, center_point = self.gen_min_area_quad_from_poly(poly)
min_area_quad_h = 0.5 * (
np.linalg.norm(min_area_quad[0] - min_area_quad[3])
+ np.linalg.norm(min_area_quad[1] - min_area_quad[2])
)
min_area_quad_w = 0.5 * (
np.linalg.norm(min_area_quad[0] - min_area_quad[1])
+ np.linalg.norm(min_area_quad[2] - min_area_quad[3])
)
if (
min(min_area_quad_h, min_area_quad_w) < self.min_text_size * ds_ratio
or min(min_area_quad_h, min_area_quad_w) > self.max_text_size * ds_ratio
):
continue
if tag:
cv2.fillPoly(
training_mask, poly.astype(np.int32)[np.newaxis, :, :], 0.15
)
else:
text_label = text_strs[poly_idx]
text_label = self.prepare_text_label(text_label, self.Lexicon_Table)
text_label_index_list = [
[self.Lexicon_Table.index(c_)]
for c_ in text_label
if c_ in self.Lexicon_Table
]
if len(text_label_index_list) < 1:
continue
tcl_poly = self.poly2tcl(poly, tcl_ratio)
tcl_quads = self.poly2quads(tcl_poly)
poly_quads = self.poly2quads(poly)
stcl_quads, quad_index = self.shrink_poly_along_width(
tcl_quads,
shrink_ratio_of_width=shrink_ratio_of_width,
expand_height_ratio=1.0 / tcl_ratio,
)
cv2.fillPoly(score_map, np.round(stcl_quads).astype(np.int32), 1.0)
cv2.fillPoly(
score_map_big, np.round(stcl_quads / ds_ratio).astype(np.int32), 1.0
)
for idx, quad in enumerate(stcl_quads):
quad_mask = np.zeros((h, w), dtype=np.float32)
quad_mask = cv2.fillPoly(
quad_mask,
np.round(quad[np.newaxis, :, :]).astype(np.int32),
1.0,
)
tbo_map = self.gen_quad_tbo(
poly_quads[quad_index[idx]], quad_mask, tbo_map
)
# score label map and score_label_map_text_label_list for refine
if label_idx == 0:
text_pos_list_ = [
[len(self.Lexicon_Table)],
]
score_label_map_text_label_list.append(text_pos_list_)
label_idx += 1
cv2.fillPoly(
score_label_map, np.round(poly_quads).astype(np.int32), label_idx
)
score_label_map_text_label_list.append(text_label_index_list)
# direction info, fix-me
n_char = len(text_label_index_list)
direction_map = self.generate_direction_map(
poly_quads, n_char, direction_map
)
# pos info
average_shrink_height = self.calculate_average_height(stcl_quads)
pos_l, pos_m = self.fit_and_gather_tcl_points_v2(
min_area_quad,
poly,
max_h=h,
max_w=w,
fixed_point_num=64,
img_id=self.img_id,
reference_height=average_shrink_height,
)
label_l = text_label_index_list
if len(text_label_index_list) < 2:
continue
pos_list.append(pos_l)
pos_mask.append(pos_m)
label_list.append(label_l)
# use big score_map for smooth tcl lines
score_map_big_resized = cv2.resize(
score_map_big, dsize=None, fx=ds_ratio, fy=ds_ratio
)
score_map = np.array(score_map_big_resized > 1e-3, dtype="float32")
return (
score_map,
score_label_map,
tbo_map,
direction_map,
training_mask,
pos_list,
pos_mask,
label_list,
score_label_map_text_label_list,
)
def adjust_point(self, poly):
"""
adjust point order.
"""
point_num = poly.shape[0]
if point_num == 4:
len_1 = np.linalg.norm(poly[0] - poly[1])
len_2 = np.linalg.norm(poly[1] - poly[2])
len_3 = np.linalg.norm(poly[2] - poly[3])
len_4 = np.linalg.norm(poly[3] - poly[0])
if (len_1 + len_3) * 1.5 < (len_2 + len_4):
poly = poly[[1, 2, 3, 0], :]
elif point_num > 4:
vector_1 = poly[0] - poly[1]
vector_2 = poly[1] - poly[2]
cos_theta = np.dot(vector_1, vector_2) / (
np.linalg.norm(vector_1) * np.linalg.norm(vector_2) + 1e-6
)
theta = np.arccos(np.round(cos_theta, decimals=4))
if abs(theta) > (70 / 180 * math.pi):
index = list(range(1, point_num)) + [0]
poly = poly[np.array(index), :]
return poly
def gen_min_area_quad_from_poly(self, poly):
"""
Generate min area quad from poly.
"""
point_num = poly.shape[0]
min_area_quad = np.zeros((4, 2), dtype=np.float32)
if point_num == 4:
min_area_quad = poly
center_point = np.sum(poly, axis=0) / 4
else:
rect = cv2.minAreaRect(
poly.astype(np.int32)
) # (center (x,y), (width, height), angle of rotation)
center_point = rect[0]
box = np.array(cv2.boxPoints(rect))
first_point_idx = 0
min_dist = 1e4
for i in range(4):
dist = (
np.linalg.norm(box[(i + 0) % 4] - poly[0])
+ np.linalg.norm(box[(i + 1) % 4] - poly[point_num // 2 - 1])
+ np.linalg.norm(box[(i + 2) % 4] - poly[point_num // 2])
+ np.linalg.norm(box[(i + 3) % 4] - poly[-1])
)
if dist < min_dist:
min_dist = dist
first_point_idx = i
for i in range(4):
min_area_quad[i] = box[(first_point_idx + i) % 4]
return min_area_quad, center_point
def shrink_quad_along_width(self, quad, begin_width_ratio=0.0, end_width_ratio=1.0):
"""
Generate shrink_quad_along_width.
"""
ratio_pair = np.array(
[[begin_width_ratio], [end_width_ratio]], dtype=np.float32
)
p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])
def shrink_poly_along_width(
self, quads, shrink_ratio_of_width, expand_height_ratio=1.0
):
"""
shrink poly with given length.
"""
upper_edge_list = []
def get_cut_info(edge_len_list, cut_len):
for idx, edge_len in enumerate(edge_len_list):
cut_len -= edge_len
if cut_len <= 0.000001:
ratio = (cut_len + edge_len_list[idx]) / edge_len_list[idx]
return idx, ratio
for quad in quads:
upper_edge_len = np.linalg.norm(quad[0] - quad[1])
upper_edge_list.append(upper_edge_len)
# length of left edge and right edge.
left_length = np.linalg.norm(quads[0][0] - quads[0][3]) * expand_height_ratio
right_length = np.linalg.norm(quads[-1][1] - quads[-1][2]) * expand_height_ratio
shrink_length = (
min(left_length, right_length, sum(upper_edge_list)) * shrink_ratio_of_width
)
# shrinking length
upper_len_left = shrink_length
upper_len_right = sum(upper_edge_list) - shrink_length
left_idx, left_ratio = get_cut_info(upper_edge_list, upper_len_left)
left_quad = self.shrink_quad_along_width(
quads[left_idx], begin_width_ratio=left_ratio, end_width_ratio=1
)
right_idx, right_ratio = get_cut_info(upper_edge_list, upper_len_right)
right_quad = self.shrink_quad_along_width(
quads[right_idx], begin_width_ratio=0, end_width_ratio=right_ratio
)
out_quad_list = []
if left_idx == right_idx:
out_quad_list.append(
[left_quad[0], right_quad[1], right_quad[2], left_quad[3]]
)
else:
out_quad_list.append(left_quad)
for idx in range(left_idx + 1, right_idx):
out_quad_list.append(quads[idx])
out_quad_list.append(right_quad)
return np.array(out_quad_list), list(range(left_idx, right_idx + 1))
def prepare_text_label(self, label_str, Lexicon_Table):
"""
Prepare text lablel by given Lexicon_Table.
"""
if len(Lexicon_Table) == 36:
return label_str.lower()
else:
return label_str
def vector_angle(self, A, B):
"""
Calculate the angle between vector AB and x-axis positive direction.
"""
AB = np.array([B[1] - A[1], B[0] - A[0]])
return np.arctan2(*AB)
def theta_line_cross_point(self, theta, point):
"""
Calculate the line through given point and angle in ax + by + c =0 form.
"""
x, y = point
cos = np.cos(theta)
sin = np.sin(theta)
return [sin, -cos, cos * y - sin * x]
def line_cross_two_point(self, A, B):
"""
Calculate the line through given point A and B in ax + by + c =0 form.
"""
angle = self.vector_angle(A, B)
return self.theta_line_cross_point(angle, A)
def average_angle(self, poly):
"""
Calculate the average angle between left and right edge in given poly.
"""
p0, p1, p2, p3 = poly
angle30 = self.vector_angle(p3, p0)
angle21 = self.vector_angle(p2, p1)
return (angle30 + angle21) / 2
def line_cross_point(self, line1, line2):
"""
line1 and line2 in 0=ax+by+c form, compute the cross point of line1 and line2
"""
a1, b1, c1 = line1
a2, b2, c2 = line2
d = a1 * b2 - a2 * b1
if d == 0:
print("Cross point does not exist")
return np.array([0, 0], dtype=np.float32)
else:
x = (b1 * c2 - b2 * c1) / d
y = (a2 * c1 - a1 * c2) / d
return np.array([x, y], dtype=np.float32)
def quad2tcl(self, poly, ratio):
"""
Generate center line by poly clock-wise point. (4, 2)
"""
ratio_pair = np.array([[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
p0_3 = poly[0] + (poly[3] - poly[0]) * ratio_pair
p1_2 = poly[1] + (poly[2] - poly[1]) * ratio_pair
return np.array([p0_3[0], p1_2[0], p1_2[1], p0_3[1]])
def poly2tcl(self, poly, ratio):
"""
Generate center line by poly clock-wise point.
"""
ratio_pair = np.array([[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
tcl_poly = np.zeros_like(poly)
point_num = poly.shape[0]
for idx in range(point_num // 2):
point_pair = (
poly[idx] + (poly[point_num - 1 - idx] - poly[idx]) * ratio_pair
)
tcl_poly[idx] = point_pair[0]
tcl_poly[point_num - 1 - idx] = point_pair[1]
return tcl_poly
def gen_quad_tbo(self, quad, tcl_mask, tbo_map):
"""
Generate tbo_map for give quad.
"""
# upper and lower line function: ax + by + c = 0;
up_line = self.line_cross_two_point(quad[0], quad[1])
lower_line = self.line_cross_two_point(quad[3], quad[2])
quad_h = 0.5 * (
np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] - quad[2])
)
quad_w = 0.5 * (
np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3])
)
# average angle of left and right line.
angle = self.average_angle(quad)
xy_in_poly = np.argwhere(tcl_mask == 1)
for y, x in xy_in_poly:
point = (x, y)
line = self.theta_line_cross_point(angle, point)
cross_point_upper = self.line_cross_point(up_line, line)
cross_point_lower = self.line_cross_point(lower_line, line)
##FIX, offset reverse
upper_offset_x, upper_offset_y = cross_point_upper - point
lower_offset_x, lower_offset_y = cross_point_lower - point
tbo_map[y, x, 0] = upper_offset_y
tbo_map[y, x, 1] = upper_offset_x
tbo_map[y, x, 2] = lower_offset_y
tbo_map[y, x, 3] = lower_offset_x
tbo_map[y, x, 4] = 1.0 / max(min(quad_h, quad_w), 1.0) * 2
return tbo_map
def poly2quads(self, poly):
"""
Split poly into quads.
"""
quad_list = []
point_num = poly.shape[0]
# point pair
point_pair_list = []
for idx in range(point_num // 2):
point_pair = [poly[idx], poly[point_num - 1 - idx]]
point_pair_list.append(point_pair)
quad_num = point_num // 2 - 1
for idx in range(quad_num):
# reshape and adjust to clock-wise
quad_list.append(
(np.array(point_pair_list)[[idx, idx + 1]]).reshape(4, 2)[[0, 2, 3, 1]]
)
return np.array(quad_list)
def rotate_im_poly(self, im, text_polys):
"""
rotate image with 90 / 180 / 270 degre
"""
im_w, im_h = im.shape[1], im.shape[0]
dst_im = im.copy()
dst_polys = []
rand_degree_ratio = np.random.rand()
rand_degree_cnt = 1
if rand_degree_ratio > 0.5:
rand_degree_cnt = 3
for i in range(rand_degree_cnt):
dst_im = np.rot90(dst_im)
rot_degree = -90 * rand_degree_cnt
rot_angle = rot_degree * math.pi / 180.0
n_poly = text_polys.shape[0]
cx, cy = 0.5 * im_w, 0.5 * im_h
ncx, ncy = 0.5 * dst_im.shape[1], 0.5 * dst_im.shape[0]
for i in range(n_poly):
wordBB = text_polys[i]
poly = []
for j in range(4): # 16->4
sx, sy = wordBB[j][0], wordBB[j][1]
dx = (
math.cos(rot_angle) * (sx - cx)
- math.sin(rot_angle) * (sy - cy)
+ ncx
)
dy = (
math.sin(rot_angle) * (sx - cx)
+ math.cos(rot_angle) * (sy - cy)
+ ncy
)
poly.append([dx, dy])
dst_polys.append(poly)
return dst_im, np.array(dst_polys, dtype=np.float32)
def __call__(self, data):
input_size = 512
im = data["image"]
text_polys = data["polys"]
text_tags = data["ignore_tags"]
text_strs = data["texts"]
h, w, _ = im.shape
text_polys, text_tags, hv_tags = self.check_and_validate_polys(
text_polys, text_tags, (h, w)
)
if text_polys.shape[0] <= 0:
return None
# set aspect ratio and keep area fix
asp_scales = np.arange(1.0, 1.55, 0.1)
asp_scale = np.random.choice(asp_scales)
if np.random.rand() < 0.5:
asp_scale = 1.0 / asp_scale
asp_scale = math.sqrt(asp_scale)
asp_wx = asp_scale
asp_hy = 1.0 / asp_scale
im = cv2.resize(im, dsize=None, fx=asp_wx, fy=asp_hy)
text_polys[:, :, 0] *= asp_wx
text_polys[:, :, 1] *= asp_hy
h, w, _ = im.shape
if max(h, w) > 2048:
rd_scale = 2048.0 / max(h, w)
im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale)
text_polys *= rd_scale
h, w, _ = im.shape
if min(h, w) < 16:
return None
# no background
im, text_polys, text_tags, hv_tags, text_strs = self.crop_area(
im, text_polys, text_tags, hv_tags, text_strs, crop_background=False
)
if text_polys.shape[0] == 0:
return None
# # continue for all ignore case
if np.sum((text_tags * 1.0)) >= text_tags.size:
return None
new_h, new_w, _ = im.shape
if (new_h is None) or (new_w is None):
return None
# resize image
std_ratio = float(input_size) / max(new_w, new_h)
rand_scales = np.array(
[0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0, 1.0, 1.0, 1.0, 1.0]
)
rz_scale = std_ratio * np.random.choice(rand_scales)
im = cv2.resize(im, dsize=None, fx=rz_scale, fy=rz_scale)
text_polys[:, :, 0] *= rz_scale
text_polys[:, :, 1] *= rz_scale
# add gaussian blur
if np.random.rand() < 0.1 * 0.5:
ks = np.random.permutation(5)[0] + 1
ks = int(ks / 2) * 2 + 1
im = cv2.GaussianBlur(im, ksize=(ks, ks), sigmaX=0, sigmaY=0)
# add brighter
if np.random.rand() < 0.1 * 0.5:
im = im * (1.0 + np.random.rand() * 0.5)
im = np.clip(im, 0.0, 255.0)
# add darker
if np.random.rand() < 0.1 * 0.5:
im = im * (1.0 - np.random.rand() * 0.5)
im = np.clip(im, 0.0, 255.0)
# Padding the im to [input_size, input_size]
new_h, new_w, _ = im.shape
if min(new_w, new_h) < input_size * 0.5:
return None
im_padded = np.ones((input_size, input_size, 3), dtype=np.float32)
im_padded[:, :, 2] = 0.485 * 255
im_padded[:, :, 1] = 0.456 * 255
im_padded[:, :, 0] = 0.406 * 255
# Random the start position
del_h = input_size - new_h
del_w = input_size - new_w
sh, sw = 0, 0
if del_h > 1:
sh = int(np.random.rand() * del_h)
if del_w > 1:
sw = int(np.random.rand() * del_w)
# Padding
im_padded[sh : sh + new_h, sw : sw + new_w, :] = im.copy()
text_polys[:, :, 0] += sw
text_polys[:, :, 1] += sh
(
score_map,
score_label_map,
border_map,
direction_map,
training_mask,
pos_list,
pos_mask,
label_list,
score_label_map_text_label,
) = self.generate_tcl_ctc_label(
input_size, input_size, text_polys, text_tags, text_strs, 0.25
)
if len(label_list) <= 0: # eliminate negative samples
return None
pos_list_temp = np.zeros([64, 3])
pos_mask_temp = np.zeros([64, 1])
label_list_temp = np.zeros([self.max_text_length, 1]) + self.pad_num
for i, label in enumerate(label_list):
n = len(label)
if n > self.max_text_length:
label_list[i] = label[: self.max_text_length]
continue
while n < self.max_text_length:
label.append([self.pad_num])
n += 1
for i in range(len(label_list)):
label_list[i] = np.array(label_list[i])
if len(pos_list) <= 0 or len(pos_list) > self.max_text_nums:
return None
for __ in range(self.max_text_nums - len(pos_list), 0, -1):
pos_list.append(pos_list_temp)
pos_mask.append(pos_mask_temp)
label_list.append(label_list_temp)
if self.img_id == self.batch_size - 1:
self.img_id = 0
else:
self.img_id += 1
im_padded[:, :, 2] -= 0.485 * 255
im_padded[:, :, 1] -= 0.456 * 255
im_padded[:, :, 0] -= 0.406 * 255
im_padded[:, :, 2] /= 255.0 * 0.229
im_padded[:, :, 1] /= 255.0 * 0.224
im_padded[:, :, 0] /= 255.0 * 0.225
im_padded = im_padded.transpose((2, 0, 1))
images = im_padded[::-1, :, :]
tcl_maps = score_map[np.newaxis, :, :]
tcl_label_maps = score_label_map[np.newaxis, :, :]
border_maps = border_map.transpose((2, 0, 1))
direction_maps = direction_map.transpose((2, 0, 1))
training_masks = training_mask[np.newaxis, :, :]
pos_list = np.array(pos_list)
pos_mask = np.array(pos_mask)
label_list = np.array(label_list)
data["images"] = images
data["tcl_maps"] = tcl_maps
data["tcl_label_maps"] = tcl_label_maps
data["border_maps"] = border_maps
data["direction_maps"] = direction_maps
data["training_masks"] = training_masks
data["label_list"] = label_list
data["pos_list"] = pos_list
data["pos_mask"] = pos_mask
return data
|