Spaces:
Runtime error
Runtime error
File size: 36,010 Bytes
fc8c192 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 |
from __future__ import absolute_import, division, print_function, unicode_literals
import copy
import json
import numpy as np
from shapely.geometry import LineString, Point, Polygon
class ClsLabelEncode(object):
def __init__(self, label_list, **kwargs):
self.label_list = label_list
def __call__(self, data):
label = data["label"]
if label not in self.label_list:
return None
label = self.label_list.index(label)
data["label"] = label
return data
class DetLabelEncode(object):
def __init__(self, **kwargs):
pass
def __call__(self, data):
label = data["label"]
label = json.loads(label)
nBox = len(label)
boxes, txts, txt_tags = [], [], []
for bno in range(0, nBox):
box = label[bno]["points"]
txt = label[bno]["transcription"]
boxes.append(box)
txts.append(txt)
if txt in ["*", "###"]:
txt_tags.append(True)
else:
txt_tags.append(False)
if len(boxes) == 0:
return None
boxes = self.expand_points_num(boxes)
boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
data["polys"] = boxes
data["texts"] = txts
data["ignore_tags"] = txt_tags
return data
def order_points_clockwise(self, pts):
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def expand_points_num(self, boxes):
max_points_num = 0
for box in boxes:
if len(box) > max_points_num:
max_points_num = len(box)
ex_boxes = []
for box in boxes:
ex_box = box + [box[-1]] * (max_points_num - len(box))
ex_boxes.append(ex_box)
return ex_boxes
class BaseRecLabelEncode(object):
"""Convert between text-label and text-index"""
def __init__(self, max_text_length, character_dict_path=None, use_space_char=False):
self.max_text_len = max_text_length
self.beg_str = "sos"
self.end_str = "eos"
self.lower = False
if character_dict_path is None:
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
self.lower = True
else:
self.character_str = []
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
line = line.decode("utf-8").strip("\n").strip("\r\n")
self.character_str.append(line)
if use_space_char:
self.character_str.append(" ")
dict_character = list(self.character_str)
dict_character = self.add_special_char(dict_character)
self.dict = {}
for i, char in enumerate(dict_character):
self.dict[char] = i
self.character = dict_character
def add_special_char(self, dict_character):
return dict_character
def encode(self, text):
"""convert text-label into text-index.
input:
text: text labels of each image. [batch_size]
output:
text: concatenated text index for CTCLoss.
[sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
length: length of each text. [batch_size]
"""
if len(text) == 0 or len(text) > self.max_text_len:
return None
if self.lower:
text = text.lower()
text_list = []
for char in text:
if char not in self.dict:
continue
text_list.append(self.dict[char])
if len(text_list) == 0:
return None
return text_list
class NRTRLabelEncode(BaseRecLabelEncode):
"""Convert between text-label and text-index"""
def __init__(
self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs
):
super(NRTRLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char
)
def __call__(self, data):
text = data["label"]
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len - 1:
return None
data["length"] = np.array(len(text))
text.insert(0, 2)
text.append(3)
text = text + [0] * (self.max_text_len - len(text))
data["label"] = np.array(text)
return data
def add_special_char(self, dict_character):
dict_character = ["blank", "<unk>", "<s>", "</s>"] + dict_character
return dict_character
class CTCLabelEncode(BaseRecLabelEncode):
"""Convert between text-label and text-index"""
def __init__(
self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs
):
super(CTCLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char
)
def __call__(self, data):
text = data["label"]
text = self.encode(text)
if text is None:
return None
data["length"] = np.array(len(text))
text = text + [0] * (self.max_text_len - len(text))
data["label"] = np.array(text)
label = [0] * len(self.character)
for x in text:
label[x] += 1
data["label_ace"] = np.array(label)
return data
def add_special_char(self, dict_character):
dict_character = ["blank"] + dict_character
return dict_character
class E2ELabelEncodeTest(BaseRecLabelEncode):
def __init__(
self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs
):
super(E2ELabelEncodeTest, self).__init__(
max_text_length, character_dict_path, use_space_char
)
def __call__(self, data):
import json
padnum = len(self.dict)
label = data["label"]
label = json.loads(label)
nBox = len(label)
boxes, txts, txt_tags = [], [], []
for bno in range(0, nBox):
box = label[bno]["points"]
txt = label[bno]["transcription"]
boxes.append(box)
txts.append(txt)
if txt in ["*", "###"]:
txt_tags.append(True)
else:
txt_tags.append(False)
boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
data["polys"] = boxes
data["ignore_tags"] = txt_tags
temp_texts = []
for text in txts:
text = text.lower()
text = self.encode(text)
if text is None:
return None
text = text + [padnum] * (self.max_text_len - len(text)) # use 36 to pad
temp_texts.append(text)
data["texts"] = np.array(temp_texts)
return data
class E2ELabelEncodeTrain(object):
def __init__(self, **kwargs):
pass
def __call__(self, data):
import json
label = data["label"]
label = json.loads(label)
nBox = len(label)
boxes, txts, txt_tags = [], [], []
for bno in range(0, nBox):
box = label[bno]["points"]
txt = label[bno]["transcription"]
boxes.append(box)
txts.append(txt)
if txt in ["*", "###"]:
txt_tags.append(True)
else:
txt_tags.append(False)
boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
data["polys"] = boxes
data["texts"] = txts
data["ignore_tags"] = txt_tags
return data
class KieLabelEncode(object):
def __init__(self, character_dict_path, norm=10, directed=False, **kwargs):
super(KieLabelEncode, self).__init__()
self.dict = dict({"": 0})
with open(character_dict_path, "r", encoding="utf-8") as fr:
idx = 1
for line in fr:
char = line.strip()
self.dict[char] = idx
idx += 1
self.norm = norm
self.directed = directed
def compute_relation(self, boxes):
"""Compute relation between every two boxes."""
x1s, y1s = boxes[:, 0:1], boxes[:, 1:2]
x2s, y2s = boxes[:, 4:5], boxes[:, 5:6]
ws, hs = x2s - x1s + 1, np.maximum(y2s - y1s + 1, 1)
dxs = (x1s[:, 0][None] - x1s) / self.norm
dys = (y1s[:, 0][None] - y1s) / self.norm
xhhs, xwhs = hs[:, 0][None] / hs, ws[:, 0][None] / hs
whs = ws / hs + np.zeros_like(xhhs)
relations = np.stack([dxs, dys, whs, xhhs, xwhs], -1)
bboxes = np.concatenate([x1s, y1s, x2s, y2s], -1).astype(np.float32)
return relations, bboxes
def pad_text_indices(self, text_inds):
"""Pad text index to same length."""
max_len = 300
recoder_len = max([len(text_ind) for text_ind in text_inds])
padded_text_inds = -np.ones((len(text_inds), max_len), np.int32)
for idx, text_ind in enumerate(text_inds):
padded_text_inds[idx, : len(text_ind)] = np.array(text_ind)
return padded_text_inds, recoder_len
def list_to_numpy(self, ann_infos):
"""Convert bboxes, relations, texts and labels to ndarray."""
boxes, text_inds = ann_infos["points"], ann_infos["text_inds"]
boxes = np.array(boxes, np.int32)
relations, bboxes = self.compute_relation(boxes)
labels = ann_infos.get("labels", None)
if labels is not None:
labels = np.array(labels, np.int32)
edges = ann_infos.get("edges", None)
if edges is not None:
labels = labels[:, None]
edges = np.array(edges)
edges = (edges[:, None] == edges[None, :]).astype(np.int32)
if self.directed:
edges = (edges & labels == 1).astype(np.int32)
np.fill_diagonal(edges, -1)
labels = np.concatenate([labels, edges], -1)
padded_text_inds, recoder_len = self.pad_text_indices(text_inds)
max_num = 300
temp_bboxes = np.zeros([max_num, 4])
h, _ = bboxes.shape
temp_bboxes[:h, :] = bboxes
temp_relations = np.zeros([max_num, max_num, 5])
temp_relations[:h, :h, :] = relations
temp_padded_text_inds = np.zeros([max_num, max_num])
temp_padded_text_inds[:h, :] = padded_text_inds
temp_labels = np.zeros([max_num, max_num])
temp_labels[:h, : h + 1] = labels
tag = np.array([h, recoder_len])
return dict(
image=ann_infos["image"],
points=temp_bboxes,
relations=temp_relations,
texts=temp_padded_text_inds,
labels=temp_labels,
tag=tag,
)
def convert_canonical(self, points_x, points_y):
assert len(points_x) == 4
assert len(points_y) == 4
points = [Point(points_x[i], points_y[i]) for i in range(4)]
polygon = Polygon([(p.x, p.y) for p in points])
min_x, min_y, _, _ = polygon.bounds
points_to_lefttop = [
LineString([points[i], Point(min_x, min_y)]) for i in range(4)
]
distances = np.array([line.length for line in points_to_lefttop])
sort_dist_idx = np.argsort(distances)
lefttop_idx = sort_dist_idx[0]
if lefttop_idx == 0:
point_orders = [0, 1, 2, 3]
elif lefttop_idx == 1:
point_orders = [1, 2, 3, 0]
elif lefttop_idx == 2:
point_orders = [2, 3, 0, 1]
else:
point_orders = [3, 0, 1, 2]
sorted_points_x = [points_x[i] for i in point_orders]
sorted_points_y = [points_y[j] for j in point_orders]
return sorted_points_x, sorted_points_y
def sort_vertex(self, points_x, points_y):
assert len(points_x) == 4
assert len(points_y) == 4
x = np.array(points_x)
y = np.array(points_y)
center_x = np.sum(x) * 0.25
center_y = np.sum(y) * 0.25
x_arr = np.array(x - center_x)
y_arr = np.array(y - center_y)
angle = np.arctan2(y_arr, x_arr) * 180.0 / np.pi
sort_idx = np.argsort(angle)
sorted_points_x, sorted_points_y = [], []
for i in range(4):
sorted_points_x.append(points_x[sort_idx[i]])
sorted_points_y.append(points_y[sort_idx[i]])
return self.convert_canonical(sorted_points_x, sorted_points_y)
def __call__(self, data):
import json
label = data["label"]
annotations = json.loads(label)
boxes, texts, text_inds, labels, edges = [], [], [], [], []
for ann in annotations:
box = ann["points"]
x_list = [box[i][0] for i in range(4)]
y_list = [box[i][1] for i in range(4)]
sorted_x_list, sorted_y_list = self.sort_vertex(x_list, y_list)
sorted_box = []
for x, y in zip(sorted_x_list, sorted_y_list):
sorted_box.append(x)
sorted_box.append(y)
boxes.append(sorted_box)
text = ann["transcription"]
texts.append(ann["transcription"])
text_ind = [self.dict[c] for c in text if c in self.dict]
text_inds.append(text_ind)
if "label" in ann.keys():
labels.append(ann["label"])
elif "key_cls" in ann.keys():
labels.append(ann["key_cls"])
else:
raise ValueError(
"Cannot found 'key_cls' in ann.keys(), please check your training annotation."
)
edges.append(ann.get("edge", 0))
ann_infos = dict(
image=data["image"],
points=boxes,
texts=texts,
text_inds=text_inds,
edges=edges,
labels=labels,
)
return self.list_to_numpy(ann_infos)
class AttnLabelEncode(BaseRecLabelEncode):
"""Convert between text-label and text-index"""
def __init__(
self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs
):
super(AttnLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char
)
def add_special_char(self, dict_character):
self.beg_str = "sos"
self.end_str = "eos"
dict_character = [self.beg_str] + dict_character + [self.end_str]
return dict_character
def __call__(self, data):
text = data["label"]
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len:
return None
data["length"] = np.array(len(text))
text = (
[0]
+ text
+ [len(self.character) - 1]
+ [0] * (self.max_text_len - len(text) - 2)
)
data["label"] = np.array(text)
return data
def get_ignored_tokens(self):
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end):
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx" % beg_or_end
return idx
class SEEDLabelEncode(BaseRecLabelEncode):
"""Convert between text-label and text-index"""
def __init__(
self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs
):
super(SEEDLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char
)
def add_special_char(self, dict_character):
self.padding = "padding"
self.end_str = "eos"
self.unknown = "unknown"
dict_character = dict_character + [self.end_str, self.padding, self.unknown]
return dict_character
def __call__(self, data):
text = data["label"]
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len:
return None
data["length"] = np.array(len(text)) + 1 # conclude eos
text = (
text
+ [len(self.character) - 3]
+ [len(self.character) - 2] * (self.max_text_len - len(text) - 1)
)
data["label"] = np.array(text)
return data
class SRNLabelEncode(BaseRecLabelEncode):
"""Convert between text-label and text-index"""
def __init__(
self,
max_text_length=25,
character_dict_path=None,
use_space_char=False,
**kwargs
):
super(SRNLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char
)
def add_special_char(self, dict_character):
dict_character = dict_character + [self.beg_str, self.end_str]
return dict_character
def __call__(self, data):
text = data["label"]
text = self.encode(text)
char_num = len(self.character)
if text is None:
return None
if len(text) > self.max_text_len:
return None
data["length"] = np.array(len(text))
text = text + [char_num - 1] * (self.max_text_len - len(text))
data["label"] = np.array(text)
return data
def get_ignored_tokens(self):
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end):
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx" % beg_or_end
return idx
class TableLabelEncode(object):
"""Convert between text-label and text-index"""
def __init__(
self,
max_text_length,
max_elem_length,
max_cell_num,
character_dict_path,
span_weight=1.0,
**kwargs
):
self.max_text_length = max_text_length
self.max_elem_length = max_elem_length
self.max_cell_num = max_cell_num
list_character, list_elem = self.load_char_elem_dict(character_dict_path)
list_character = self.add_special_char(list_character)
list_elem = self.add_special_char(list_elem)
self.dict_character = {}
for i, char in enumerate(list_character):
self.dict_character[char] = i
self.dict_elem = {}
for i, elem in enumerate(list_elem):
self.dict_elem[elem] = i
self.span_weight = span_weight
def load_char_elem_dict(self, character_dict_path):
list_character = []
list_elem = []
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
substr = lines[0].decode("utf-8").strip("\r\n").split("\t")
character_num = int(substr[0])
elem_num = int(substr[1])
for cno in range(1, 1 + character_num):
character = lines[cno].decode("utf-8").strip("\r\n")
list_character.append(character)
for eno in range(1 + character_num, 1 + character_num + elem_num):
elem = lines[eno].decode("utf-8").strip("\r\n")
list_elem.append(elem)
return list_character, list_elem
def add_special_char(self, list_character):
self.beg_str = "sos"
self.end_str = "eos"
list_character = [self.beg_str] + list_character + [self.end_str]
return list_character
def get_span_idx_list(self):
span_idx_list = []
for elem in self.dict_elem:
if "span" in elem:
span_idx_list.append(self.dict_elem[elem])
return span_idx_list
def __call__(self, data):
cells = data["cells"]
structure = data["structure"]["tokens"]
structure = self.encode(structure, "elem")
if structure is None:
return None
elem_num = len(structure)
structure = [0] + structure + [len(self.dict_elem) - 1]
structure = structure + [0] * (self.max_elem_length + 2 - len(structure))
structure = np.array(structure)
data["structure"] = structure
elem_char_idx1 = self.dict_elem["<td>"]
elem_char_idx2 = self.dict_elem["<td"]
span_idx_list = self.get_span_idx_list()
td_idx_list = np.logical_or(
structure == elem_char_idx1, structure == elem_char_idx2
)
td_idx_list = np.where(td_idx_list)[0]
structure_mask = np.ones((self.max_elem_length + 2, 1), dtype=np.float32)
bbox_list = np.zeros((self.max_elem_length + 2, 4), dtype=np.float32)
bbox_list_mask = np.zeros((self.max_elem_length + 2, 1), dtype=np.float32)
img_height, img_width, img_ch = data["image"].shape
if len(span_idx_list) > 0:
span_weight = len(td_idx_list) * 1.0 / len(span_idx_list)
span_weight = min(max(span_weight, 1.0), self.span_weight)
for cno in range(len(cells)):
if "bbox" in cells[cno]:
bbox = cells[cno]["bbox"].copy()
bbox[0] = bbox[0] * 1.0 / img_width
bbox[1] = bbox[1] * 1.0 / img_height
bbox[2] = bbox[2] * 1.0 / img_width
bbox[3] = bbox[3] * 1.0 / img_height
td_idx = td_idx_list[cno]
bbox_list[td_idx] = bbox
bbox_list_mask[td_idx] = 1.0
cand_span_idx = td_idx + 1
if cand_span_idx < (self.max_elem_length + 2):
if structure[cand_span_idx] in span_idx_list:
structure_mask[cand_span_idx] = span_weight
data["bbox_list"] = bbox_list
data["bbox_list_mask"] = bbox_list_mask
data["structure_mask"] = structure_mask
char_beg_idx = self.get_beg_end_flag_idx("beg", "char")
char_end_idx = self.get_beg_end_flag_idx("end", "char")
elem_beg_idx = self.get_beg_end_flag_idx("beg", "elem")
elem_end_idx = self.get_beg_end_flag_idx("end", "elem")
data["sp_tokens"] = np.array(
[
char_beg_idx,
char_end_idx,
elem_beg_idx,
elem_end_idx,
elem_char_idx1,
elem_char_idx2,
self.max_text_length,
self.max_elem_length,
self.max_cell_num,
elem_num,
]
)
return data
def encode(self, text, char_or_elem):
"""convert text-label into text-index."""
if char_or_elem == "char":
max_len = self.max_text_length
current_dict = self.dict_character
else:
max_len = self.max_elem_length
current_dict = self.dict_elem
if len(text) > max_len:
return None
if len(text) == 0:
if char_or_elem == "char":
return [self.dict_character["space"]]
else:
return None
text_list = []
for char in text:
if char not in current_dict:
return None
text_list.append(current_dict[char])
if len(text_list) == 0:
if char_or_elem == "char":
return [self.dict_character["space"]]
else:
return None
return text_list
def get_ignored_tokens(self, char_or_elem):
beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
if char_or_elem == "char":
if beg_or_end == "beg":
idx = np.array(self.dict_character[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict_character[self.end_str])
else:
assert False, (
"Unsupport type %s in get_beg_end_flag_idx of char" % beg_or_end
)
elif char_or_elem == "elem":
if beg_or_end == "beg":
idx = np.array(self.dict_elem[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict_elem[self.end_str])
else:
assert False, (
"Unsupport type %s in get_beg_end_flag_idx of elem" % beg_or_end
)
else:
assert False, "Unsupport type %s in char_or_elem" % char_or_elem
return idx
class SARLabelEncode(BaseRecLabelEncode):
"""Convert between text-label and text-index"""
def __init__(
self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs
):
super(SARLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char
)
def add_special_char(self, dict_character):
beg_end_str = "<BOS/EOS>"
unknown_str = "<UKN>"
padding_str = "<PAD>"
dict_character = dict_character + [unknown_str]
self.unknown_idx = len(dict_character) - 1
dict_character = dict_character + [beg_end_str]
self.start_idx = len(dict_character) - 1
self.end_idx = len(dict_character) - 1
dict_character = dict_character + [padding_str]
self.padding_idx = len(dict_character) - 1
return dict_character
def __call__(self, data):
text = data["label"]
text = self.encode(text)
if text is None:
return None
if len(text) >= self.max_text_len - 1:
return None
data["length"] = np.array(len(text))
target = [self.start_idx] + text + [self.end_idx]
padded_text = [self.padding_idx for _ in range(self.max_text_len)]
padded_text[: len(target)] = target
data["label"] = np.array(padded_text)
return data
def get_ignored_tokens(self):
return [self.padding_idx]
class PRENLabelEncode(BaseRecLabelEncode):
def __init__(
self, max_text_length, character_dict_path, use_space_char=False, **kwargs
):
super(PRENLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char
)
def add_special_char(self, dict_character):
padding_str = "<PAD>" # 0
end_str = "<EOS>" # 1
unknown_str = "<UNK>" # 2
dict_character = [padding_str, end_str, unknown_str] + dict_character
self.padding_idx = 0
self.end_idx = 1
self.unknown_idx = 2
return dict_character
def encode(self, text):
if len(text) == 0 or len(text) >= self.max_text_len:
return None
if self.lower:
text = text.lower()
text_list = []
for char in text:
if char not in self.dict:
text_list.append(self.unknown_idx)
else:
text_list.append(self.dict[char])
text_list.append(self.end_idx)
if len(text_list) < self.max_text_len:
text_list += [self.padding_idx] * (self.max_text_len - len(text_list))
return text_list
def __call__(self, data):
text = data["label"]
encoded_text = self.encode(text)
if encoded_text is None:
return None
data["label"] = np.array(encoded_text)
return data
class VQATokenLabelEncode(object):
"""
Label encode for NLP VQA methods
"""
def __init__(
self,
class_path,
contains_re=False,
add_special_ids=False,
algorithm="LayoutXLM",
infer_mode=False,
ocr_engine=None,
**kwargs
):
super(VQATokenLabelEncode, self).__init__()
from paddlenlp.transformers import (
LayoutLMTokenizer,
LayoutLMv2Tokenizer,
LayoutXLMTokenizer,
)
from ppocr.utils.utility import load_vqa_bio_label_maps
tokenizer_dict = {
"LayoutXLM": {
"class": LayoutXLMTokenizer,
"pretrained_model": "layoutxlm-base-uncased",
},
"LayoutLM": {
"class": LayoutLMTokenizer,
"pretrained_model": "layoutlm-base-uncased",
},
"LayoutLMv2": {
"class": LayoutLMv2Tokenizer,
"pretrained_model": "layoutlmv2-base-uncased",
},
}
self.contains_re = contains_re
tokenizer_config = tokenizer_dict[algorithm]
self.tokenizer = tokenizer_config["class"].from_pretrained(
tokenizer_config["pretrained_model"]
)
self.label2id_map, id2label_map = load_vqa_bio_label_maps(class_path)
self.add_special_ids = add_special_ids
self.infer_mode = infer_mode
self.ocr_engine = ocr_engine
def __call__(self, data):
# load bbox and label info
ocr_info = self._load_ocr_info(data)
height, width, _ = data["image"].shape
words_list = []
bbox_list = []
input_ids_list = []
token_type_ids_list = []
segment_offset_id = []
gt_label_list = []
entities = []
# for re
train_re = self.contains_re and not self.infer_mode
if train_re:
relations = []
id2label = {}
entity_id_to_index_map = {}
empty_entity = set()
data["ocr_info"] = copy.deepcopy(ocr_info)
for info in ocr_info:
if train_re:
# for re
if len(info["text"]) == 0:
empty_entity.add(info["id"])
continue
id2label[info["id"]] = info["label"]
relations.extend([tuple(sorted(l)) for l in info["linking"]])
# smooth_box
bbox = self._smooth_box(info["bbox"], height, width)
text = info["text"]
encode_res = self.tokenizer.encode(
text, pad_to_max_seq_len=False, return_attention_mask=True
)
if not self.add_special_ids:
# TODO: use tok.all_special_ids to remove
encode_res["input_ids"] = encode_res["input_ids"][1:-1]
encode_res["token_type_ids"] = encode_res["token_type_ids"][1:-1]
encode_res["attention_mask"] = encode_res["attention_mask"][1:-1]
# parse label
if not self.infer_mode:
label = info["label"]
gt_label = self._parse_label(label, encode_res)
# construct entities for re
if train_re:
if gt_label[0] != self.label2id_map["O"]:
entity_id_to_index_map[info["id"]] = len(entities)
label = label.upper()
entities.append(
{
"start": len(input_ids_list),
"end": len(input_ids_list) + len(encode_res["input_ids"]),
"label": label.upper(),
}
)
else:
entities.append(
{
"start": len(input_ids_list),
"end": len(input_ids_list) + len(encode_res["input_ids"]),
"label": "O",
}
)
input_ids_list.extend(encode_res["input_ids"])
token_type_ids_list.extend(encode_res["token_type_ids"])
bbox_list.extend([bbox] * len(encode_res["input_ids"]))
words_list.append(text)
segment_offset_id.append(len(input_ids_list))
if not self.infer_mode:
gt_label_list.extend(gt_label)
data["input_ids"] = input_ids_list
data["token_type_ids"] = token_type_ids_list
data["bbox"] = bbox_list
data["attention_mask"] = [1] * len(input_ids_list)
data["labels"] = gt_label_list
data["segment_offset_id"] = segment_offset_id
data["tokenizer_params"] = dict(
padding_side=self.tokenizer.padding_side,
pad_token_type_id=self.tokenizer.pad_token_type_id,
pad_token_id=self.tokenizer.pad_token_id,
)
data["entities"] = entities
if train_re:
data["relations"] = relations
data["id2label"] = id2label
data["empty_entity"] = empty_entity
data["entity_id_to_index_map"] = entity_id_to_index_map
return data
def _load_ocr_info(self, data):
def trans_poly_to_bbox(poly):
x1 = np.min([p[0] for p in poly])
x2 = np.max([p[0] for p in poly])
y1 = np.min([p[1] for p in poly])
y2 = np.max([p[1] for p in poly])
return [x1, y1, x2, y2]
if self.infer_mode:
ocr_result = self.ocr_engine.ocr(data["image"], cls=False)
ocr_info = []
for res in ocr_result:
ocr_info.append(
{
"text": res[1][0],
"bbox": trans_poly_to_bbox(res[0]),
"poly": res[0],
}
)
return ocr_info
else:
info = data["label"]
# read text info
info_dict = json.loads(info)
return info_dict["ocr_info"]
def _smooth_box(self, bbox, height, width):
bbox[0] = int(bbox[0] * 1000.0 / width)
bbox[2] = int(bbox[2] * 1000.0 / width)
bbox[1] = int(bbox[1] * 1000.0 / height)
bbox[3] = int(bbox[3] * 1000.0 / height)
return bbox
def _parse_label(self, label, encode_res):
gt_label = []
if label.lower() == "other":
gt_label.extend([0] * len(encode_res["input_ids"]))
else:
gt_label.append(self.label2id_map[("b-" + label).upper()])
gt_label.extend(
[self.label2id_map[("i-" + label).upper()]]
* (len(encode_res["input_ids"]) - 1)
)
return gt_label
class MultiLabelEncode(BaseRecLabelEncode):
def __init__(
self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs
):
super(MultiLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char
)
self.ctc_encode = CTCLabelEncode(
max_text_length, character_dict_path, use_space_char, **kwargs
)
self.sar_encode = SARLabelEncode(
max_text_length, character_dict_path, use_space_char, **kwargs
)
def __call__(self, data):
data_ctc = copy.deepcopy(data)
data_sar = copy.deepcopy(data)
data_out = dict()
data_out["img_path"] = data.get("img_path", None)
data_out["image"] = data["image"]
ctc = self.ctc_encode.__call__(data_ctc)
sar = self.sar_encode.__call__(data_sar)
if ctc is None or sar is None:
return None
data_out["label_ctc"] = ctc["label"]
data_out["label_sar"] = sar["label"]
data_out["length"] = ctc["length"]
return data_out
|