File size: 7,712 Bytes
fc8c192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import cv2
import numpy as np
import paddle
from numpy.fft import ifft

from .poly_nms import *


def fill_hole(input_mask):
    h, w = input_mask.shape
    canvas = np.zeros((h + 2, w + 2), np.uint8)
    canvas[1 : h + 1, 1 : w + 1] = input_mask.copy()

    mask = np.zeros((h + 4, w + 4), np.uint8)

    cv2.floodFill(canvas, mask, (0, 0), 1)
    canvas = canvas[1 : h + 1, 1 : w + 1].astype(np.bool)

    return ~canvas | input_mask


def fourier2poly(fourier_coeff, num_reconstr_points=50):
    """Inverse Fourier transform
    Args:
        fourier_coeff (ndarray): Fourier coefficients shaped (n, 2k+1),
            with n and k being candidates number and Fourier degree
            respectively.
        num_reconstr_points (int): Number of reconstructed polygon points.
    Returns:
        Polygons (ndarray): The reconstructed polygons shaped (n, n')
    """

    a = np.zeros((len(fourier_coeff), num_reconstr_points), dtype="complex")
    k = (len(fourier_coeff[0]) - 1) // 2

    a[:, 0 : k + 1] = fourier_coeff[:, k:]
    a[:, -k:] = fourier_coeff[:, :k]

    poly_complex = ifft(a) * num_reconstr_points
    polygon = np.zeros((len(fourier_coeff), num_reconstr_points, 2))
    polygon[:, :, 0] = poly_complex.real
    polygon[:, :, 1] = poly_complex.imag
    return polygon.astype("int32").reshape((len(fourier_coeff), -1))


class FCEPostProcess(object):
    """
    The post process for FCENet.
    """

    def __init__(
        self,
        scales,
        fourier_degree=5,
        num_reconstr_points=50,
        decoding_type="fcenet",
        score_thr=0.3,
        nms_thr=0.1,
        alpha=1.0,
        beta=1.0,
        box_type="poly",
        **kwargs
    ):

        self.scales = scales
        self.fourier_degree = fourier_degree
        self.num_reconstr_points = num_reconstr_points
        self.decoding_type = decoding_type
        self.score_thr = score_thr
        self.nms_thr = nms_thr
        self.alpha = alpha
        self.beta = beta
        self.box_type = box_type

    def __call__(self, preds, shape_list):
        score_maps = []
        for key, value in preds.items():
            if isinstance(value, paddle.Tensor):
                value = value.numpy()
            cls_res = value[:, :4, :, :]
            reg_res = value[:, 4:, :, :]
            score_maps.append([cls_res, reg_res])

        return self.get_boundary(score_maps, shape_list)

    def resize_boundary(self, boundaries, scale_factor):
        """Rescale boundaries via scale_factor.

        Args:
            boundaries (list[list[float]]): The boundary list. Each boundary
            with size 2k+1 with k>=4.
            scale_factor(ndarray): The scale factor of size (4,).

        Returns:
            boundaries (list[list[float]]): The scaled boundaries.
        """
        boxes = []
        scores = []
        for b in boundaries:
            sz = len(b)
            valid_boundary(b, True)
            scores.append(b[-1])
            b = (
                (
                    np.array(b[: sz - 1])
                    * (np.tile(scale_factor[:2], int((sz - 1) / 2)).reshape(1, sz - 1))
                )
                .flatten()
                .tolist()
            )
            boxes.append(np.array(b).reshape([-1, 2]))

        return np.array(boxes, dtype=np.float32), scores

    def get_boundary(self, score_maps, shape_list):
        assert len(score_maps) == len(self.scales)
        boundaries = []
        for idx, score_map in enumerate(score_maps):
            scale = self.scales[idx]
            boundaries = boundaries + self._get_boundary_single(score_map, scale)

        # nms
        boundaries = poly_nms(boundaries, self.nms_thr)
        boundaries, scores = self.resize_boundary(
            boundaries, (1 / shape_list[0, 2:]).tolist()[::-1]
        )

        boxes_batch = [dict(points=boundaries, scores=scores)]
        return boxes_batch

    def _get_boundary_single(self, score_map, scale):
        assert len(score_map) == 2
        assert score_map[1].shape[1] == 4 * self.fourier_degree + 2

        return self.fcenet_decode(
            preds=score_map,
            fourier_degree=self.fourier_degree,
            num_reconstr_points=self.num_reconstr_points,
            scale=scale,
            alpha=self.alpha,
            beta=self.beta,
            box_type=self.box_type,
            score_thr=self.score_thr,
            nms_thr=self.nms_thr,
        )

    def fcenet_decode(
        self,
        preds,
        fourier_degree,
        num_reconstr_points,
        scale,
        alpha=1.0,
        beta=2.0,
        box_type="poly",
        score_thr=0.3,
        nms_thr=0.1,
    ):
        """Decoding predictions of FCENet to instances.

        Args:
            preds (list(Tensor)): The head output tensors.
            fourier_degree (int): The maximum Fourier transform degree k.
            num_reconstr_points (int): The points number of the polygon
                reconstructed from predicted Fourier coefficients.
            scale (int): The down-sample scale of the prediction.
            alpha (float) : The parameter to calculate final scores. Score_{final}
                    = (Score_{text region} ^ alpha)
                    * (Score_{text center region}^ beta)
            beta (float) : The parameter to calculate final score.
            box_type (str):  Boundary encoding type 'poly' or 'quad'.
            score_thr (float) : The threshold used to filter out the final
                candidates.
            nms_thr (float) :  The threshold of nms.

        Returns:
            boundaries (list[list[float]]): The instance boundary and confidence
                list.
        """
        assert isinstance(preds, list)
        assert len(preds) == 2
        assert box_type in ["poly", "quad"]

        cls_pred = preds[0][0]
        tr_pred = cls_pred[0:2]
        tcl_pred = cls_pred[2:]

        reg_pred = preds[1][0].transpose([1, 2, 0])
        x_pred = reg_pred[:, :, : 2 * fourier_degree + 1]
        y_pred = reg_pred[:, :, 2 * fourier_degree + 1 :]

        score_pred = (tr_pred[1] ** alpha) * (tcl_pred[1] ** beta)
        tr_pred_mask = (score_pred) > score_thr
        tr_mask = fill_hole(tr_pred_mask)

        tr_contours, _ = cv2.findContours(
            tr_mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
        )  # opencv4

        mask = np.zeros_like(tr_mask)
        boundaries = []
        for cont in tr_contours:
            deal_map = mask.copy().astype(np.int8)
            cv2.drawContours(deal_map, [cont], -1, 1, -1)

            score_map = score_pred * deal_map
            score_mask = score_map > 0
            xy_text = np.argwhere(score_mask)
            dxy = xy_text[:, 1] + xy_text[:, 0] * 1j

            x, y = x_pred[score_mask], y_pred[score_mask]
            c = x + y * 1j
            c[:, fourier_degree] = c[:, fourier_degree] + dxy
            c *= scale

            polygons = fourier2poly(c, num_reconstr_points)
            score = score_map[score_mask].reshape(-1, 1)
            polygons = poly_nms(np.hstack((polygons, score)).tolist(), nms_thr)

            boundaries = boundaries + polygons

        boundaries = poly_nms(boundaries, nms_thr)

        if box_type == "quad":
            new_boundaries = []
            for boundary in boundaries:
                poly = np.array(boundary[:-1]).reshape(-1, 2).astype(np.float32)
                score = boundary[-1]
                points = cv2.boxPoints(cv2.minAreaRect(poly))
                points = np.int0(points)
                new_boundaries.append(points.reshape(-1).tolist() + [score])
                boundaries = new_boundaries

        return boundaries