Spaces:
Runtime error
Runtime error
File size: 5,177 Bytes
93e93f5 984392a 93e93f5 4d96bef 93e93f5 f91e6ad 93e93f5 984392a 93e93f5 984392a 93e93f5 984392a 93e93f5 984392a 93e93f5 984392a 93e93f5 984392a 93e93f5 984392a 93e93f5 984392a 93e93f5 984392a 93e93f5 1559b6e 93e93f5 0123ca1 10958d2 660d034 93e93f5 10958d2 984392a 10958d2 984392a 10958d2 93e93f5 10958d2 93e93f5 f91e6ad 984392a f91e6ad 93e93f5 984392a 93e93f5 984392a 93e93f5 984392a 93e93f5 7a505c5 984392a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import gradio as gr
from easyocr import Reader
from PIL import Image
import io
import json
import csv
import openai
import ast
import os
openai.api_key = os.getenv('API_KEY')
reader = Reader(["tr"])
def get_parsed_address(input_img):
address_full_text = get_text(input_img)
return openai_response(address_full_text)
def get_text(input_img):
result = reader.readtext(input_img, detail=0)
return " ".join(result)
def save_csv(mahalle, il, sokak, apartman):
adres_full = [mahalle, il, sokak, apartman]
with open("adress_book.csv", "a", encoding="utf-8") as f:
write = csv.writer(f)
write.writerow(adres_full)
return adres_full
def get_json(mahalle, il, sokak, apartman):
adres = {"mahalle": mahalle, "il": il, "sokak": sokak, "apartman": apartman}
dump = json.dumps(adres, indent=4, ensure_ascii=False)
return dump
def text_dict_il(input):
eval_result = ast.literal_eval(input)["il"]
return eval_result
def text_dict_mahalle(input):
eval_result = ast.literal_eval(input)["mahalle"]
return eval_result
def text_dict_ilce(input):
eval_result = ast.literal_eval(input)["ilçe"]
return eval_result
def text_dict_sokak(input):
eval_result = ast.literal_eval(input)["sokak"]
return eval_result
def text_dict_no(input):
eval_result = ast.literal_eval(input)["no"]
return eval_result
def text_dict_tel(input):
eval_result = ast.literal_eval(input)["tel"]
return eval_result
def text_dict_isim(input):
eval_result = ast.literal_eval(input)["isim_soyisim"]
return eval_result
def text_dict_adres(input):
eval_result = ast.literal_eval(input)["adres"]
return eval_result
def openai_response(ocr_input):
prompt = f"""Tabular Data Extraction
You are a highly intelligent and accurate tabular data extractor from plain text input and especially from emergency text that carries address information, your inputs can be text of arbitrary size, but the output should be in [{{'tabular': {{'entity_type': 'entity'}} }}] JSON format
Force it to only extract keys that are shared as an example in the examples section, if a key value is not found in the text input, then it should be ignored and should be returned as an empty string
Have only il, ilçe, mahalle, sokak, no, tel, isim_soyisim, adres
Examples:
Input: Deprem sırasında evimizde yer alan adresimiz: İstanbul, Beşiktaş, Yıldız Mahallesi, Cumhuriyet Caddesi No: 35, cep telefonu numaram 5551231256, adim Ahmet Yilmaz
Output: [{{'Tabular': '{{'il': 'İstanbul', 'ilçe': 'Beşiktaş', 'mahalle': 'Yıldız Mahallesi', 'sokak': 'Cumhuriyet Caddesi', 'no': 35, 'tel': 5551231256, 'isim_soyisim': 'Ahmet Yılmaz', 'adres': 'İstanbul, Beşiktaş, Yıldız Mahallesi, Cumhuriyet Caddesi No: 35'}}' }}]
Input: {ocr_input}
Output:
"""
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt,
temperature=0,
max_tokens=300,
top_p=1,
frequency_penalty=0.0,
presence_penalty=0.0,
stop=["\n"],
)
resp = response["choices"][0]["text"]
resp = eval(resp.replace("'{", "{").replace("}'", "}"))
resp = resp[0]["Tabular"]
return resp
with gr.Blocks() as demo:
gr.Markdown("""## Enkaz Bildirme""")
gr.Markdown("Bu uygulamada ekran görüntüsü sürükleyip bırakarak AFAD'a enkaz bildirimi yapabilirsiniz.")
with gr.Row():
img_area = gr.Image(label="Ekran Görüntüsü")
ocr_result = gr.Textbox(label="Metin")
open_api_text = gr.Textbox(label="Tam Adres")
submit_button = gr.Button(label="Görüntüyü Yükle")
with gr.Column():
with gr.Row():
il = gr.Textbox(label="İl")
ilce = gr.Textbox(label="İlçe")
with gr.Row():
mahalle = gr.Textbox(label="Mahalle")
sokak = gr.Textbox(label="Sokak/Cadde/Bulvar")
with gr.Row():
no = gr.Textbox(label="No")
tel = gr.Textbox(label="Telefon")
with gr.Row():
isim_soyisim = gr.Textbox(label="İsim Soyisim")
adres = gr.Textbox(label="Adres")
submit_button.click(get_text, inputs = img_area, outputs = open_api_text, api_name="upload_image")
ocr_result.change(openai_response, ocr_result, open_api_text, api_name="upload-text")
open_api_text.change(text_dict_il, [open_api_text], il)
open_api_text.change(text_dict_ilce, [open_api_text], ilce)
open_api_text.change(text_dict_mahalle, [open_api_text], mahalle)
open_api_text.change(text_dict_sokak, [open_api_text], sokak)
open_api_text.change(text_dict_no, [open_api_text], no)
open_api_text.change(text_dict_adres, [open_api_text], adres)
open_api_text.change(text_dict_tel, [open_api_text], tel)
open_api_text.change(text_dict_isim, [open_api_text], isim_soyisim)
# json_out = gr.Textbox()
# csv_out = gr.Textbox()
# adres_submit = gr.Button()
# adres_submit.click(get_json, [mahalle, il, sokak, apartman], json_out)
# adres_submit.click(save_csv, [mahalle, il, sokak, apartman], csv_out)
if __name__ == "__main__":
demo.launch()
|