File size: 4,684 Bytes
46b1434
f66b5f5
46b1434
 
 
 
f66b5f5
 
46b1434
 
f66b5f5
46b1434
 
 
 
 
 
 
 
f66b5f5
 
46b1434
f66b5f5
 
46b1434
 
f66b5f5
46b1434
 
f66b5f5
46b1434
 
f66b5f5
 
 
 
 
 
 
 
46b1434
f66b5f5
 
46b1434
 
 
 
 
 
 
 
 
 
 
 
 
 
31c4737
46b1434
 
 
 
 
f66b5f5
 
 
 
 
 
 
 
 
46b1434
 
 
f66b5f5
46b1434
 
79d0dbc
 
 
 
 
 
 
 
 
 
 
 
46b1434
f66b5f5
46b1434
 
f66b5f5
46b1434
f66b5f5
 
 
 
 
46b1434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f66b5f5
 
 
 
 
 
46b1434
f66b5f5
 
 
46b1434
f66b5f5
 
 
 
 
46b1434
 
 
f66b5f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from easyocr import Reader
import gradio as gr
import openai
import ast
import os

from openai_api import OpenAI_API
import utils


openai.api_key = os.getenv("API_KEY")
reader = Reader(["tr"])


def get_text(input_img):
    result = reader.readtext(input_img, detail=0)
    return " ".join(result)


# Submit button
def get_parsed_address(input_img):

    address_full_text = get_text(input_img)
    return openai_response(address_full_text)


# Open API on change
def text_dict(input):
    eval_result = ast.literal_eval(input)
    utils.write_db(eval_result)

    return (
        str(eval_result["city"]),
        str(eval_result["distinct"]),
        str(eval_result["neighbourhood"]),
        str(eval_result["street"]),
        str(eval_result["address"]),
        str(eval_result["tel"]),
        str(eval_result["name_surname"]),
        str(eval_result["no"]),
    )


def openai_response(ocr_input):
    prompt = f"""Tabular Data Extraction You are a highly intelligent and accurate tabular data extractor from 
            plain text input and especially from emergency text that carries address information, your inputs can be text 
            of arbitrary size, but the output should be in [{{'tabular': {{'entity_type': 'entity'}} }}] JSON format Force it 
            to only extract keys that are shared as an example in the examples section, if a key value is not found in the 
            text input, then it should be ignored. Have only city, distinct, neighbourhood, 
            street, no, tel, name_surname, address Examples: Input: Deprem sırasında evimizde yer alan adresimiz: İstanbul, 
            Beşiktaş, Yıldız Mahallesi, Cumhuriyet Caddesi No: 35, cep telefonu numaram 5551231256, adim Ahmet Yilmaz 
            Output: {{'city': 'İstanbul', 'distinct': 'Beşiktaş', 'neighbourhood': 'Yıldız Mahallesi', 'street': 'Cumhuriyet Caddesi', 'no': '35', 'tel': '5551231256', 'name_surname': 'Ahmet Yılmaz', 'address': 'İstanbul, Beşiktaş, Yıldız Mahallesi, Cumhuriyet Caddesi No: 35'}}
            Input: {ocr_input}
            Output:
        """

    openai_client = OpenAI_API()
    response = openai_client.single_request(prompt)
    resp = response["choices"][0]["text"]
    print(resp)
    resp = eval(resp.replace("'{", "{").replace("}'", "}"))
    resp["input"] = ocr_input
    dict_keys = [
        "city",
        "distinct",
        "neighbourhood",
        "street",
        "no",
        "tel",
        "name_surname",
        "address",
        "input",
    ]
    for key in dict_keys:
        if key not in resp.keys():
            resp[key] = ""
    return resp

def ner_response(ocr_input):
    API_URL = "https://api-inference.huggingface.co/models/deprem-ml/deprem-ner"
    headers = {"Authorization": "Bearer xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"}

    def query(payload):
        response = requests.post(API_URL, headers=headers, json=payload)
        return response.json()

    output = query({
        "inputs": ocr_input,
    })
    return output

# User Interface
with gr.Blocks() as demo:
    gr.Markdown(
        """
    # Enkaz Bildirme Uygulaması
    """
    )
    gr.Markdown(
        "Bu uygulamada ekran görüntüsü sürükleyip bırakarak AFAD'a enkaz bildirimi yapabilirsiniz. Mesajı metin olarak da girebilirsiniz, tam adresi ayrıştırıp döndürür. API olarak kullanmak isterseniz sayfanın en altında use via api'ya tıklayın."
    )
    with gr.Row():
        img_area = gr.Image(label="Ekran Görüntüsü yükleyin 👇")
        ocr_result = gr.Textbox(label="Metin yükleyin 👇 ")
    open_api_text = gr.Textbox(label="Tam Adres")
    submit_button = gr.Button(label="Yükle")
    with gr.Column():
        with gr.Row():
            city = gr.Textbox(label="İl")
            distinct = gr.Textbox(label="İlçe")
        with gr.Row():
            neighbourhood = gr.Textbox(label="Mahalle")
            street = gr.Textbox(label="Sokak/Cadde/Bulvar")
        with gr.Row():
            tel = gr.Textbox(label="Telefon")
        with gr.Row():
            name_surname = gr.Textbox(label="İsim Soyisim")
            address = gr.Textbox(label="Adres")
        with gr.Row():
            no = gr.Textbox(label="Kapı No")

    submit_button.click(
        get_parsed_address,
        inputs=img_area,
        outputs=open_api_text,
        api_name="upload_image",
    )

    ocr_result.change(
        openai_response, ocr_result, open_api_text, api_name="upload-text"
    )

    open_api_text.change(
        text_dict,
        open_api_text,
        [city, distinct, neighbourhood, street, address, tel, name_surname, no],
    )


if __name__ == "__main__":
    demo.launch()