demoPOC commited on
Commit
bd1be43
·
verified ·
1 Parent(s): b324e50

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -3
app.py CHANGED
@@ -41,7 +41,8 @@ from langchain.document_loaders import UnstructuredFileLoader, TextLoader
41
  from langchain import PromptTemplate
42
 
43
  from langchain.chains import RetrievalQA
44
- from langchain.memory import ConversationBufferWindowMemory
 
45
 
46
  from transformers import LlamaTokenizer, AutoTokenizer
47
 
@@ -119,7 +120,7 @@ def getLLMModel(LLMID):
119
  model_kwargs={"temperature": 0.2,"max_new_tokens":2500})
120
  print("Mistral AI LLM Selected")
121
  else:
122
- llm = OpenAI(model_name="gpt-3.5-turbo-instruct",temperature=0.0)
123
  print("Open AI LLM Selected")
124
  return llm
125
 
@@ -208,7 +209,8 @@ def getRAGChain(customerName, customerDistrict, custDetailsPresent, vectordb,llm
208
  # Retrieve conversation history if available
209
  #memory = ConversationBufferWindowMemory(k=3, memory_key="history", input_key="question")
210
  global memory
211
- memory = ConversationBufferWindowMemory(k=3, memory_key="history", input_key="question", initial_memory=conversation_history)
 
212
 
213
  # chain = RetrievalQA.from_chain_type(
214
  # llm=getLLMModel(llmID),
@@ -229,6 +231,7 @@ def getRAGChain(customerName, customerDistrict, custDetailsPresent, vectordb,llm
229
  llm=getLLMModel(llmID),
230
  chain_type='stuff',
231
  retriever=getRetriever(vectordb),
 
232
  #retriever=vectordb.as_retriever(),
233
  verbose=False,
234
  chain_type_kwargs={
 
41
  from langchain import PromptTemplate
42
 
43
  from langchain.chains import RetrievalQA
44
+ #from langchain.memory import ConversationBufferWindowMemory
45
+ from langchain.memory import ConversationBufferMemory
46
 
47
  from transformers import LlamaTokenizer, AutoTokenizer
48
 
 
120
  model_kwargs={"temperature": 0.2,"max_new_tokens":2500})
121
  print("Mistral AI LLM Selected")
122
  else:
123
+ llm = OpenAI(model_name="gpt-3.5-turbo-0125",temperature=0.0)
124
  print("Open AI LLM Selected")
125
  return llm
126
 
 
209
  # Retrieve conversation history if available
210
  #memory = ConversationBufferWindowMemory(k=3, memory_key="history", input_key="question")
211
  global memory
212
+ #memory = ConversationBufferWindowMemory(k=3, memory_key="history", input_key="question", initial_memory=conversation_history)
213
+ memory = ConversationBufferMemory(k=3, memory_key="history", input_key="question", initial_memory=conversation_history)
214
 
215
  # chain = RetrievalQA.from_chain_type(
216
  # llm=getLLMModel(llmID),
 
231
  llm=getLLMModel(llmID),
232
  chain_type='stuff',
233
  retriever=getRetriever(vectordb),
234
+ memory=memory,
235
  #retriever=vectordb.as_retriever(),
236
  verbose=False,
237
  chain_type_kwargs={