Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -41,7 +41,8 @@ from langchain.document_loaders import UnstructuredFileLoader, TextLoader
|
|
41 |
from langchain import PromptTemplate
|
42 |
|
43 |
from langchain.chains import RetrievalQA
|
44 |
-
from langchain.memory import ConversationBufferWindowMemory
|
|
|
45 |
|
46 |
from transformers import LlamaTokenizer, AutoTokenizer
|
47 |
|
@@ -119,7 +120,7 @@ def getLLMModel(LLMID):
|
|
119 |
model_kwargs={"temperature": 0.2,"max_new_tokens":2500})
|
120 |
print("Mistral AI LLM Selected")
|
121 |
else:
|
122 |
-
llm = OpenAI(model_name="gpt-3.5-turbo-
|
123 |
print("Open AI LLM Selected")
|
124 |
return llm
|
125 |
|
@@ -208,7 +209,8 @@ def getRAGChain(customerName, customerDistrict, custDetailsPresent, vectordb,llm
|
|
208 |
# Retrieve conversation history if available
|
209 |
#memory = ConversationBufferWindowMemory(k=3, memory_key="history", input_key="question")
|
210 |
global memory
|
211 |
-
memory = ConversationBufferWindowMemory(k=3, memory_key="history", input_key="question", initial_memory=conversation_history)
|
|
|
212 |
|
213 |
# chain = RetrievalQA.from_chain_type(
|
214 |
# llm=getLLMModel(llmID),
|
@@ -229,6 +231,7 @@ def getRAGChain(customerName, customerDistrict, custDetailsPresent, vectordb,llm
|
|
229 |
llm=getLLMModel(llmID),
|
230 |
chain_type='stuff',
|
231 |
retriever=getRetriever(vectordb),
|
|
|
232 |
#retriever=vectordb.as_retriever(),
|
233 |
verbose=False,
|
234 |
chain_type_kwargs={
|
|
|
41 |
from langchain import PromptTemplate
|
42 |
|
43 |
from langchain.chains import RetrievalQA
|
44 |
+
#from langchain.memory import ConversationBufferWindowMemory
|
45 |
+
from langchain.memory import ConversationBufferMemory
|
46 |
|
47 |
from transformers import LlamaTokenizer, AutoTokenizer
|
48 |
|
|
|
120 |
model_kwargs={"temperature": 0.2,"max_new_tokens":2500})
|
121 |
print("Mistral AI LLM Selected")
|
122 |
else:
|
123 |
+
llm = OpenAI(model_name="gpt-3.5-turbo-0125",temperature=0.0)
|
124 |
print("Open AI LLM Selected")
|
125 |
return llm
|
126 |
|
|
|
209 |
# Retrieve conversation history if available
|
210 |
#memory = ConversationBufferWindowMemory(k=3, memory_key="history", input_key="question")
|
211 |
global memory
|
212 |
+
#memory = ConversationBufferWindowMemory(k=3, memory_key="history", input_key="question", initial_memory=conversation_history)
|
213 |
+
memory = ConversationBufferMemory(k=3, memory_key="history", input_key="question", initial_memory=conversation_history)
|
214 |
|
215 |
# chain = RetrievalQA.from_chain_type(
|
216 |
# llm=getLLMModel(llmID),
|
|
|
231 |
llm=getLLMModel(llmID),
|
232 |
chain_type='stuff',
|
233 |
retriever=getRetriever(vectordb),
|
234 |
+
memory=memory,
|
235 |
#retriever=vectordb.as_retriever(),
|
236 |
verbose=False,
|
237 |
chain_type_kwargs={
|