Spaces:
Sleeping
Sleeping
import streamlit as st | |
import plotly.express as px | |
import plotly.graph_objects as go | |
import pandas as pd | |
import numpy as np | |
from datetime import datetime, timedelta | |
from typing import Dict, List, Any | |
# --- Data Processing Class --- | |
class DataProcessor: | |
def __init__(self): | |
self.data = None | |
self.numeric_columns = [] | |
self.categorical_columns = [] | |
self.date_columns = [] | |
def load_data(self, file) -> bool: | |
try: | |
self.data = pd.read_csv(file) | |
self._classify_columns() | |
return True | |
except Exception as e: | |
st.error(f"Error loading data: {str(e)}") | |
return False | |
def _classify_columns(self): | |
for col in self.data.columns: | |
if pd.api.types.is_numeric_dtype(self.data[col]): | |
self.numeric_columns.append(col) | |
elif pd.api.types.is_datetime64_any_dtype(self.data[col]): | |
self.date_columns.append(col) | |
else: | |
try: | |
pd.to_datetime(self.data[col]) | |
self.date_columns.append(col) | |
except: | |
self.categorical_columns.append(col) | |
def get_basic_stats(self) -> Dict[str, Any]: | |
if self.data is None: | |
return {} | |
stats = { | |
'summary': self.data[self.numeric_columns].describe(), | |
'missing_values': self.data.isnull().sum(), | |
'row_count': len(self.data), | |
'column_count': len(self.data.columns) | |
} | |
return stats | |
def create_visualization(self, chart_type: str, x_col: str, y_col: str, color_col: str = None) -> go.Figure: | |
if chart_type == "Line Plot": | |
fig = px.line(self.data, x=x_col, y=y_col, color=color_col) | |
elif chart_type == "Bar Plot": | |
fig = px.bar(self.data, x=x_col, y=y_col, color=color_col) | |
elif chart_type == "Scatter Plot": | |
fig = px.scatter(self.data, x=x_col, y=y_col, color=color_col) | |
elif chart_type == "Box Plot": | |
fig = px.box(self.data, x=x_col, y=y_col, color=color_col) | |
else: | |
fig = px.histogram(self.data, x=x_col, color=color_col) | |
return fig | |
# --- Sample Data Generation --- | |
def generate_sample_data(): | |
dates = pd.date_range(start='2024-01-01', end='2024-01-31', freq='D') | |
return pd.DataFrame({ | |
'Date': dates, | |
'Revenue': np.random.normal(1000, 100, len(dates)), | |
'Users': np.random.randint(100, 200, len(dates)), | |
'Engagement': np.random.uniform(0.5, 0.9, len(dates)), | |
'Category': np.random.choice(['A', 'B', 'C'], len(dates)) | |
}) | |
# --- Page Rendering Functions --- | |
def render_dashboard(): | |
st.header("π Performance Dashboard") | |
data = generate_sample_data() | |
# KPI Metrics | |
col1, col2, col3, col4 = st.columns(4) | |
with col1: | |
st.metric("Total Revenue", f"${data['Revenue'].sum():,.2f}") | |
with col2: | |
st.metric("Total Users", f"{data['Users'].sum():,}") | |
with col3: | |
st.metric("Avg Engagement", f"{data['Engagement'].mean():.2%}") | |
with col4: | |
st.metric("Active Days", len(data)) | |
# Charts | |
col1, col2 = st.columns(2) | |
with col1: | |
st.subheader("Revenue Trend") | |
fig = px.line(data, x='Date', y='Revenue') | |
st.plotly_chart(fig, use_container_width=True) | |
with col2: | |
st.subheader("User Engagement by Category") | |
fig = px.scatter(data, x='Date', y='Engagement', | |
size='Users', color='Category') | |
st.plotly_chart(fig, use_container_width=True) | |
def render_analytics(): | |
st.header("π Data Analytics") | |
processor = DataProcessor() | |
# File upload | |
uploaded_file = st.file_uploader("Upload your CSV data", type=['csv']) | |
if uploaded_file is not None: | |
if processor.load_data(uploaded_file): | |
st.success("Data loaded successfully!") | |
tabs = st.tabs(["Data Preview", "Statistics", "Visualization", "Metrics"]) | |
# Data Preview Tab | |
with tabs[0]: | |
st.subheader("Data Preview") | |
st.dataframe(processor.data.head()) | |
st.info(f"Total rows: {len(processor.data)}, Total columns: {len(processor.data.columns)}") | |
# Statistics Tab | |
with tabs[1]: | |
st.subheader("Basic Statistics") | |
stats = processor.get_basic_stats() | |
st.write(stats['summary']) | |
st.subheader("Missing Values") | |
st.write(stats['missing_values']) | |
# Visualization Tab | |
with tabs[2]: | |
st.subheader("Create Visualization") | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
chart_type = st.selectbox( | |
"Select Chart Type", | |
["Line Plot", "Bar Plot", "Scatter Plot", "Box Plot", "Histogram"] | |
) | |
with col2: | |
x_col = st.selectbox("Select X-axis", processor.data.columns) | |
with col3: | |
y_col = st.selectbox("Select Y-axis", processor.numeric_columns) if chart_type != "Histogram" else None | |
color_col = st.selectbox("Select Color Variable (optional)", | |
['None'] + processor.categorical_columns) | |
color_col = None if color_col == 'None' else color_col | |
fig = processor.create_visualization( | |
chart_type, | |
x_col, | |
y_col if y_col else x_col, | |
color_col | |
) | |
st.plotly_chart(fig, use_container_width=True) | |
# Metrics Tab | |
with tabs[3]: | |
st.subheader("Column Metrics") | |
selected_col = st.selectbox("Select column", processor.numeric_columns) | |
metrics = { | |
'Mean': processor.data[selected_col].mean(), | |
'Median': processor.data[selected_col].median(), | |
'Std Dev': processor.data[selected_col].std(), | |
'Min': processor.data[selected_col].min(), | |
'Max': processor.data[selected_col].max() | |
} | |
cols = st.columns(len(metrics)) | |
for col, (metric, value) in zip(cols, metrics.items()): | |
col.metric(metric, f"{value:.2f}") | |
def render_brainstorm(): | |
st.header("π§ Product Brainstorm") | |
# Product selection | |
products = ["Product A", "Product B", "Product C", "Add New Product"] | |
selected_product = st.selectbox("Select Product", products) | |
if selected_product == "Add New Product": | |
with st.form("new_product"): | |
st.subheader("Add New Product") | |
product_name = st.text_input("Product Name") | |
product_desc = st.text_area("Product Description") | |
product_category = st.selectbox("Category", ["Category A", "Category B", "Category C"]) | |
if st.form_submit_button("Add Product"): | |
st.success(f"Product '{product_name}' added successfully!") | |
else: | |
st.subheader(f"Analysis for {selected_product}") | |
# Sample metrics | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
st.metric("Sales", "$12,345", "+10%") | |
with col2: | |
st.metric("Reviews", "4.5/5", "+0.2") | |
with col3: | |
st.metric("Engagement", "89%", "-2%") | |
def render_chat(): | |
st.header("π¬ Business Assistant") | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Display chat history | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Chat input | |
if prompt := st.chat_input("Ask about your business..."): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Simple response (placeholder for LLM integration) | |
response = f"Thank you for your question about '{prompt}'. The LLM integration will be implemented soon." | |
with st.chat_message("assistant"): | |
st.markdown(response) | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
# --- Main App --- | |
def main(): | |
st.set_page_config( | |
page_title="Prospira", | |
page_icon="π", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
# Sidebar | |
with st.sidebar: | |
st.title("Prospira") | |
st.subheader("Data-Driven Solutions") | |
# Navigation | |
page = st.radio( | |
"Navigation", | |
["Dashboard", "Analytics", "Brainstorm", "Chat"] | |
) | |
# Page routing | |
if page == "Dashboard": | |
render_dashboard() | |
elif page == "Analytics": | |
render_analytics() | |
elif page == "Brainstorm": | |
render_brainstorm() | |
elif page == "Chat": | |
render_chat() | |
if __name__ == "__main__": | |
main() |