Spaces:
Sleeping
Sleeping
File size: 13,249 Bytes
0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea fcb1801 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 0986c90 0d7d0ea 0986c90 0d7d0ea 0986c90 fcb1801 0986c90 899f7e3 0986c90 899f7e3 0986c90 899f7e3 0d7d0ea 899f7e3 5f6c869 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 5f6c869 899f7e3 5f6c869 2cf497c 5f6c869 899f7e3 0d7d0ea d19bd0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import streamlit as st
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from typing import Dict, List, Any
# --- Data Processing Class ---
class DataProcessor:
def __init__(self):
self.data = None
self.numeric_columns = []
self.categorical_columns = []
self.date_columns = []
def load_data(self, file) -> bool:
try:
self.data = pd.read_csv(file)
self._classify_columns()
return True
except Exception as e:
st.error(f"Error loading data: {str(e)}")
return False
def _classify_columns(self):
for col in self.data.columns:
if pd.api.types.is_numeric_dtype(self.data[col]):
self.numeric_columns.append(col)
elif pd.api.types.is_datetime64_any_dtype(self.data[col]):
self.date_columns.append(col)
else:
try:
pd.to_datetime(self.data[col])
self.date_columns.append(col)
except:
self.categorical_columns.append(col)
def get_basic_stats(self) -> Dict[str, Any]:
if self.data is None:
return {}
stats = {
'summary': self.data[self.numeric_columns].describe(),
'missing_values': self.data.isnull().sum(),
'row_count': len(self.data),
'column_count': len(self.data.columns)
}
return stats
def create_visualization(self, chart_type: str, x_col: str, y_col: str, color_col: str = None) -> go.Figure:
if chart_type == "Line Plot":
fig = px.line(self.data, x=x_col, y=y_col, color=color_col)
elif chart_type == "Bar Plot":
fig = px.bar(self.data, x=x_col, y=y_col, color=color_col)
elif chart_type == "Scatter Plot":
fig = px.scatter(self.data, x=x_col, y=y_col, color=color_col)
elif chart_type == "Box Plot":
fig = px.box(self.data, x=x_col, y=y_col, color=color_col)
else:
fig = px.histogram(self.data, x=x_col, color=color_col)
return fig
class BrainstormManager:
def __init__(self):
if 'products' not in st.session_state:
st.session_state.products = {}
def generate_product_form(self) -> Dict:
with st.form("product_form"):
basic_info = {
"name": st.text_input("Product Name"),
"category": st.selectbox("Category", ["Digital", "Physical", "Service"]),
"description": st.text_area("Description"),
"target_audience": st.multiselect("Target Audience",
["Students", "Professionals", "Businesses", "Seniors", "Youth"]),
"price_range": st.slider("Price Range ($)", 0, 1000, (50, 200)),
"launch_date": st.date_input("Expected Launch Date")
}
st.subheader("Market Analysis")
market_analysis = {
"competitors": st.text_area("Main Competitors (one per line)"),
"unique_features": st.text_area("Unique Selling Points"),
"market_size": st.selectbox("Market Size",
["Small", "Medium", "Large", "Enterprise"]),
"growth_potential": st.slider("Growth Potential", 1, 10)
}
submitted = st.form_submit_button("Save Product")
return basic_info, market_analysis, submitted
def analyze_product(self, product_data: Dict) -> Dict:
insights = {
"market_opportunity": self._calculate_opportunity_score(product_data),
"suggested_price": self._suggest_price(product_data),
"risk_factors": self._identify_risks(product_data),
"next_steps": self._generate_next_steps(product_data)
}
return insights
def _calculate_opportunity_score(self, data: Dict) -> int:
score = 0
if data.get("market_size") == "Large":
score += 3
if len(data.get("target_audience", [])) >= 2:
score += 2
if data.get("growth_potential", 0) > 7:
score += 2
return min(score, 10)
def _suggest_price(self, data: Dict) -> float:
base_price = sum(data.get("price_range", (0, 0))) / 2
if data.get("market_size") == "Enterprise":
base_price *= 1.5
return round(base_price, 2)
def _identify_risks(self, data: Dict) -> List[str]:
risks = []
if data.get("competitors"):
risks.append("Competitive market - differentiation crucial")
if len(data.get("target_audience", [])) < 2:
risks.append("Narrow target audience - consider expansion")
return risks
def _generate_next_steps(self, data: Dict) -> List[str]:
steps = [
"Create detailed product specification",
"Develop MVP timeline",
"Plan marketing strategy"
]
if data.get("market_size") == "Enterprise":
steps.append("Prepare enterprise sales strategy")
return steps
# --- Sample Data Generation ---
def generate_sample_data():
dates = pd.date_range(start='2024-01-01', end='2024-01-31', freq='D')
return pd.DataFrame({
'Date': dates,
'Revenue': np.random.normal(1000, 100, len(dates)),
'Users': np.random.randint(100, 200, len(dates)),
'Engagement': np.random.uniform(0.5, 0.9, len(dates)),
'Category': np.random.choice(['A', 'B', 'C'], len(dates))
})
# --- Page Rendering Functions ---
def render_dashboard():
st.header("π Performance Dashboard")
data = generate_sample_data()
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Total Revenue", f"${data['Revenue'].sum():,.2f}")
with col2:
st.metric("Total Users", f"{data['Users'].sum():,}")
with col3:
st.metric("Avg Engagement", f"{data['Engagement'].mean():.2%}")
with col4:
st.metric("Active Days", len(data))
col1, col2 = st.columns(2)
with col1:
st.subheader("Revenue Trend")
fig = px.line(data, x='Date', y='Revenue')
st.plotly_chart(fig, use_container_width=True)
with col2:
st.subheader("User Engagement by Category")
fig = px.scatter(data, x='Date', y='Engagement',
size='Users', color='Category')
st.plotly_chart(fig, use_container_width=True)
def render_analytics():
st.header("π Data Analytics")
processor = DataProcessor()
uploaded_file = st.file_uploader("Upload your CSV data", type=['csv'])
if uploaded_file is not None:
if processor.load_data(uploaded_file):
st.success("Data loaded successfully!")
tabs = st.tabs(["Data Preview", "Statistics", "Visualization", "Metrics"])
with tabs[0]:
st.subheader("Data Preview")
st.dataframe(processor.data.head())
st.info(f"Total rows: {len(processor.data)}, Total columns: {len(processor.data.columns)}")
with tabs[1]:
st.subheader("Basic Statistics")
stats = processor.get_basic_stats()
st.write(stats['summary'])
st.subheader("Missing Values")
st.write(stats['missing_values'])
with tabs[2]:
st.subheader("Create Visualization")
col1, col2, col3 = st.columns(3)
with col1:
chart_type = st.selectbox(
"Select Chart Type",
["Line Plot", "Bar Plot", "Scatter Plot", "Box Plot", "Histogram"]
)
with col2:
x_col = st.selectbox("Select X-axis", processor.data.columns)
with col3:
y_col = st.selectbox("Select Y-axis", processor.numeric_columns) if chart_type != "Histogram" else None
color_col = st.selectbox("Select Color Variable (optional)",
['None'] + processor.categorical_columns)
color_col = None if color_col == 'None' else color_col
fig = processor.create_visualization(
chart_type,
x_col,
y_col if y_col else x_col,
color_col
)
st.plotly_chart(fig, use_container_width=True)
with tabs[3]:
st.subheader("Column Metrics")
selected_col = st.selectbox("Select column", processor.numeric_columns)
metrics = {
'Mean': processor.data[selected_col].mean(),
'Median': processor.data[selected_col].median(),
'Std Dev': processor.data[selected_col].std(),
'Min': processor.data[selected_col].min(),
'Max': processor.data[selected_col].max()
}
cols = st.columns(len(metrics))
for col, (metric, value) in zip(cols, metrics.items()):
col.metric(metric, f"{value:.2f}")
def render_brainstorm_page():
st.title("Product Brainstorm Hub")
manager = BrainstormManager()
action = st.sidebar.radio("Action", ["View Products", "Create New Product"])
if action == "Create New Product":
basic_info, market_analysis, submitted = manager.generate_product_form()
if submitted:
product_data = {**basic_info, **market_analysis}
insights = manager.analyze_product(product_data)
product_id = f"prod_{len(st.session_state.products)}"
st.session_state.products[product_id] = {
"data": product_data,
"insights": insights,
"created_at": str(datetime.now())
}
st.success("Product added! View insights in the Products tab.")
else:
if st.session_state.products:
for prod_id, product in st.session_state.products.items():
with st.expander(f"π― {product['data']['name']}"):
col1, col2 = st.columns(2)
with col1:
st.subheader("Product Details")
st.write(f"Category: {product['data']['category']}")
st.write(f"Target: {', '.join(product['data']['target_audience'])}")
st.write(f"Description: {product['data']['description']}")
with col2:
st.subheader("Insights")
st.metric("Opportunity Score", f"{product['insights']['market_opportunity']}/10")
st.metric("Suggested Price", f"${product['insights']['suggested_price']}")
st.write("**Risk Factors:**")
for risk in product['insights']['risk_factors']:
st.write(f"- {risk}")
st.write("**Next Steps:**")
for step in product['insights']['next_steps']:
st.write(f"- {step}")
else:
st.info("No products yet. Create one to get started!")
def render_chat():
st.header("π¬ Business Assistant")
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Ask about your business..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
response = f"Thank you for your question about '{prompt}'. The LLM integration will be implemented soon."
with st.chat_message("assistant"):
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
def main():
st.set_page_config(
page_title="Prospira",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
with st.sidebar:
st.title("Prospira")
st.subheader("Data-Driven Solutions")
page = st.radio(
"Navigation",
["Dashboard", "Analytics", "Brainstorm", "Chat"]
)
if page == "Dashboard":
render_dashboard()
elif page == "Analytics":
render_analytics()
elif page == "Brainstorm":
render_brainstorm_page()
elif page == "Chat":
render_chat()
if __name__ == "__main__":
main()
print("rohith") |