backend / main_backend_lighteval.py
albertvillanova's picture
Fix style
8b85b8d verified
raw
history blame
3.49 kB
import logging
import pprint
from huggingface_hub import snapshot_download
from src.backend.manage_requests import (
FAILED_STATUS,
FINISHED_STATUS,
PENDING_STATUS,
RUNNING_STATUS,
check_completed_evals,
get_eval_requests,
set_eval_request,
)
from src.backend.run_eval_suite_lighteval import run_evaluation
from src.backend.sort_queue import sort_models_by_priority
from src.envs import (
ACCELERATOR,
API,
EVAL_REQUESTS_PATH_BACKEND,
EVAL_RESULTS_PATH_BACKEND,
LIMIT,
QUEUE_REPO,
REGION,
RESULTS_REPO,
TASKS_LIGHTEVAL,
TOKEN,
VENDOR,
)
from src.logging import setup_logger
logging.getLogger("openai").setLevel(logging.WARNING)
logger = setup_logger(__name__)
# logging.basicConfig(level=logging.ERROR)
pp = pprint.PrettyPrinter(width=80)
snapshot_download(
repo_id=RESULTS_REPO,
revision="main",
local_dir=EVAL_RESULTS_PATH_BACKEND,
repo_type="dataset",
max_workers=60,
token=TOKEN,
)
snapshot_download(
repo_id=QUEUE_REPO,
revision="main",
local_dir=EVAL_REQUESTS_PATH_BACKEND,
repo_type="dataset",
max_workers=60,
token=TOKEN,
)
def run_auto_eval():
current_pending_status = [PENDING_STATUS]
# pull the eval dataset from the hub and parse any eval requests
# check completed evals and set them to finished
check_completed_evals(
api=API,
checked_status=RUNNING_STATUS,
completed_status=FINISHED_STATUS,
failed_status=FAILED_STATUS,
hf_repo=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND,
hf_repo_results=RESULTS_REPO,
local_dir_results=EVAL_RESULTS_PATH_BACKEND,
)
# Get all eval request that are PENDING, if you want to run other evals, change this parameter
eval_requests = get_eval_requests(
job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND
)
# Sort the evals by priority (first submitted first run)
eval_requests = sort_models_by_priority(api=API, models=eval_requests)
logger.info(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
if len(eval_requests) == 0:
return
eval_request = eval_requests[0]
logger.info(pp.pformat(eval_request))
set_eval_request(
api=API,
eval_request=eval_request,
set_to_status=RUNNING_STATUS,
hf_repo=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND,
)
# This needs to be done
# instance_size, instance_type = get_instance_for_model(eval_request)
# For GPU
# instance_size, instance_type = "small", "g4dn.xlarge"
# For CPU
# Updated naming available at https://huggingface.co/docs/inference-endpoints/pricing
instance_size, instance_type = "x4", "intel-icl"
logger.info(
f"Starting Evaluation of {eval_request.json_filepath} on Inference endpoints: {instance_size} {instance_type}"
)
run_evaluation(
eval_request=eval_request,
task_names=TASKS_LIGHTEVAL,
local_dir=EVAL_RESULTS_PATH_BACKEND,
batch_size=1,
accelerator=ACCELERATOR,
region=REGION,
vendor=VENDOR,
instance_size=instance_size,
instance_type=instance_type,
limit=LIMIT,
)
logger.info(
f"Completed Evaluation of {eval_request.json_filepath} on Inference endpoints: {instance_size} {instance_type}"
)
if __name__ == "__main__":
run_auto_eval()