File size: 2,789 Bytes
1ffc326
 
 
 
 
9b14fa5
 
 
 
 
 
 
 
 
0823987
1ffc326
9b14fa5
 
 
 
 
 
 
 
 
 
 
 
8b88d2c
3e6770c
 
9b14fa5
1ffc326
8b88d2c
 
1ffc326
 
 
9b14fa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ffc326
 
 
 
 
 
 
 
 
 
 
 
 
 
9b14fa5
1ffc326
 
 
9b14fa5
 
 
1ffc326
 
 
 
 
 
 
 
 
8b88d2c
1ffc326
 
 
 
 
 
 
 
 
 
9b14fa5
 
 
1ffc326
 
5375d59
9b14fa5
 
 
1ffc326
 
 
9b14fa5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import logging
import pprint

from huggingface_hub import snapshot_download

from src.backend.manage_requests import (
    FAILED_STATUS,
    FINISHED_STATUS,
    PENDING_STATUS,
    RUNNING_STATUS,
    check_completed_evals,
    get_eval_requests,
    set_eval_request,
)
from src.backend.run_eval_suite_harness import run_evaluation
from src.backend.sort_queue import sort_models_by_priority
from src.envs import (
    API,
    DEVICE,
    EVAL_REQUESTS_PATH_BACKEND,
    EVAL_RESULTS_PATH_BACKEND,
    LIMIT,
    NUM_FEWSHOT,
    QUEUE_REPO,
    RESULTS_REPO,
    TASKS_HARNESS,
    TOKEN,
)
from src.logging import setup_logger


logging.getLogger("openai").setLevel(logging.WARNING)

# logging.basicConfig(level=logging.ERROR)
logger = setup_logger(__name__)
pp = pprint.PrettyPrinter(width=80)


snapshot_download(
    repo_id=RESULTS_REPO,
    revision="main",
    local_dir=EVAL_RESULTS_PATH_BACKEND,
    repo_type="dataset",
    max_workers=60,
    token=TOKEN,
)
snapshot_download(
    repo_id=QUEUE_REPO,
    revision="main",
    local_dir=EVAL_REQUESTS_PATH_BACKEND,
    repo_type="dataset",
    max_workers=60,
    token=TOKEN,
)


def run_auto_eval():
    current_pending_status = [PENDING_STATUS]

    # pull the eval dataset from the hub and parse any eval requests
    # check completed evals and set them to finished
    check_completed_evals(
        api=API,
        checked_status=RUNNING_STATUS,
        completed_status=FINISHED_STATUS,
        failed_status=FAILED_STATUS,
        hf_repo=QUEUE_REPO,
        local_dir=EVAL_REQUESTS_PATH_BACKEND,
        hf_repo_results=RESULTS_REPO,
        local_dir_results=EVAL_RESULTS_PATH_BACKEND,
    )

    # Get all eval request that are PENDING, if you want to run other evals, change this parameter
    eval_requests = get_eval_requests(
        job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND
    )
    # Sort the evals by priority (first submitted first run)
    eval_requests = sort_models_by_priority(api=API, models=eval_requests)

    print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")

    if len(eval_requests) == 0:
        return

    eval_request = eval_requests[0]
    logger.info(pp.pformat(eval_request))

    set_eval_request(
        api=API,
        eval_request=eval_request,
        set_to_status=RUNNING_STATUS,
        hf_repo=QUEUE_REPO,
        local_dir=EVAL_REQUESTS_PATH_BACKEND,
    )

    run_evaluation(
        eval_request=eval_request,
        task_names=TASKS_HARNESS,
        num_fewshot=NUM_FEWSHOT,
        local_dir=EVAL_RESULTS_PATH_BACKEND,
        results_repo=RESULTS_REPO,
        batch_size="auto",
        device=DEVICE,
        limit=LIMIT,
    )


if __name__ == "__main__":
    run_auto_eval()