Spaces:
Runtime error
Runtime error
import tensorflow as tf | |
from tensorflow.keras.applications import EfficientNetB0 | |
efficient_net = EfficientNetB0(weights='imagenet',include_top=False,input_shape=(150, 150, 3)) | |
model = efficient_net.output | |
model = tf.keras.layers.GlobalAveragePooling2D()(model) | |
model = tf.keras.layers.Dense(64, activation='relu')(model) | |
model = tf.keras.layers.Dropout(rate=0.1)(model) | |
model = tf.keras.layers.Dense(32, activation='relu')(model) | |
model = tf.keras.layers.Dropout(rate=0.1)(model) | |
model = tf.keras.layers.Dense(2, activation='sigmoid')(model) | |
model = tf.keras.models.Model(inputs=efficient_net.input, outputs=model) | |
model.compile(loss='binary_crossentropy',optimizer =tf.keras.optimizers.legacy.Adam(), metrics= ['accuracy']) | |
model.load_weights('./my_checkpoint') | |
import gradio as gr | |
def cardiomegaly(img): | |
img = img.reshape(1, 150, 150, 3) | |
prediction = model.predict(img).tolist()[0] | |
class_names = ["False", "True"] | |
return {class_names[i]: prediction[i] for i in range(2)} | |
#set the user uploaded image as the input array | |
#match same shape as the input shape in the model | |
im = gr.inputs.Image(shape=(150, 150), image_mode='RGB', invert_colors=False, source="upload") | |
#setup the interface | |
iface = gr.Interface( | |
fn = cardiomegaly, | |
inputs = gr.Image(shape=(150, 150)), | |
outputs = gr.outputs.Label(), | |
) | |
iface.launch(share=True) |