Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import requests
|
6 |
+
from io import BytesIO
|
7 |
+
from selenium import webdriver
|
8 |
+
from selenium.webdriver.chrome.service import Service
|
9 |
+
from selenium.webdriver.common.by import By
|
10 |
+
from webdriver_manager.chrome import ChromeDriverManager
|
11 |
+
import time
|
12 |
+
import pandas as pd
|
13 |
+
import base64
|
14 |
+
|
15 |
+
def load_model(model_path):
|
16 |
+
interpreter = tf.lite.Interpreter(model_path=model_path)
|
17 |
+
interpreter.allocate_tensors()
|
18 |
+
return interpreter
|
19 |
+
|
20 |
+
def preprocess_image(image, input_size):
|
21 |
+
image = image.convert('RGB')
|
22 |
+
image = image.resize((input_size, input_size))
|
23 |
+
image_np = np.array(image, dtype=np.float32)
|
24 |
+
image_np = np.expand_dims(image_np, axis=0)
|
25 |
+
image_np = image_np / 255.0 # Normalize to [0, 1]
|
26 |
+
return image_np
|
27 |
+
|
28 |
+
def run_inference(interpreter, input_data):
|
29 |
+
input_details = interpreter.get_input_details()
|
30 |
+
output_details = interpreter.get_output_details()
|
31 |
+
|
32 |
+
interpreter.set_tensor(input_details[0]['index'], input_data)
|
33 |
+
interpreter.invoke()
|
34 |
+
|
35 |
+
output_data_shopping_intent = interpreter.get_tensor(output_details[0]['index'])
|
36 |
+
output_data_sensitive = interpreter.get_tensor(output_details[1]['index'])
|
37 |
+
|
38 |
+
return output_data_shopping_intent, output_data_sensitive
|
39 |
+
|
40 |
+
def fetch_images_from_url(url):
|
41 |
+
options = webdriver.ChromeOptions()
|
42 |
+
options.add_argument('--headless')
|
43 |
+
options.add_argument('--no-sandbox')
|
44 |
+
options.add_argument('--disable-dev-shm-usage')
|
45 |
+
options.add_argument('--disable-gpu')
|
46 |
+
|
47 |
+
service = Service(ChromeDriverManager().install())
|
48 |
+
driver = webdriver.Chrome(service=service, options=options)
|
49 |
+
driver.get(url)
|
50 |
+
|
51 |
+
# Give the page some time to load and execute JavaScript
|
52 |
+
time.sleep(10)
|
53 |
+
|
54 |
+
images = driver.find_elements(By.TAG_NAME, 'img')
|
55 |
+
img_urls = [img.get_attribute('src') for img in images if img.get_attribute('src')]
|
56 |
+
|
57 |
+
driver.quit()
|
58 |
+
return img_urls
|
59 |
+
|
60 |
+
def image_to_base64(image):
|
61 |
+
buffered = BytesIO()
|
62 |
+
image.save(buffered, format="PNG")
|
63 |
+
return base64.b64encode(buffered.getvalue()).decode()
|
64 |
+
|
65 |
+
def main():
|
66 |
+
st.set_page_config(layout="wide")
|
67 |
+
st.title("Image Classification with TFLite")
|
68 |
+
st.write("Enter a URL to fetch and classify all images on the page.")
|
69 |
+
|
70 |
+
model_path = "model.tflite"
|
71 |
+
url = st.text_input("Enter URL")
|
72 |
+
|
73 |
+
if url:
|
74 |
+
img_urls = fetch_images_from_url(url)
|
75 |
+
if img_urls:
|
76 |
+
st.write(f"Found {len(img_urls)} images")
|
77 |
+
interpreter = load_model(model_path)
|
78 |
+
input_details = interpreter.get_input_details()
|
79 |
+
input_shape = input_details[0]['shape']
|
80 |
+
input_size = input_shape[1] # assuming square input
|
81 |
+
|
82 |
+
data = []
|
83 |
+
errors = []
|
84 |
+
|
85 |
+
for img_url in img_urls:
|
86 |
+
try:
|
87 |
+
response = requests.get(img_url)
|
88 |
+
image = Image.open(BytesIO(response.content))
|
89 |
+
|
90 |
+
input_data = preprocess_image(image, input_size)
|
91 |
+
output_data_shopping_intent, output_data_sensitive = run_inference(interpreter, input_data)
|
92 |
+
|
93 |
+
# Convert image to Base64
|
94 |
+
image.thumbnail((100, 100))
|
95 |
+
thumbnail_base64 = image_to_base64(image)
|
96 |
+
thumbnail_data_url = f"data:image/png;base64,{thumbnail_base64}"
|
97 |
+
|
98 |
+
data.append({
|
99 |
+
'Thumbnail': thumbnail_data_url,
|
100 |
+
'URL': img_url,
|
101 |
+
'Shopping Intent': output_data_shopping_intent.flatten().tolist(),
|
102 |
+
'Sensitivity': output_data_sensitive.flatten().tolist()
|
103 |
+
})
|
104 |
+
except Exception as e:
|
105 |
+
errors.append(f"Could not process image {img_url}: {e}")
|
106 |
+
|
107 |
+
# Convert data to DataFrame
|
108 |
+
df = pd.DataFrame(data)
|
109 |
+
|
110 |
+
# Configure DataFrame display with images, URLs, and classifications
|
111 |
+
st.data_editor(df, column_config={
|
112 |
+
"Thumbnail": st.column_config.ImageColumn("Thumbnail", help="Image thumbnails"),
|
113 |
+
"URL": st.column_config.LinkColumn("URL"),
|
114 |
+
"Shopping Intent": st.column_config.BarChartColumn("Shopping Intent", width="small"),
|
115 |
+
"Sensitivity": st.column_config.BarChartColumn("Sensitivity", width="small")
|
116 |
+
})
|
117 |
+
|
118 |
+
# Display errors in an expandable section
|
119 |
+
if errors:
|
120 |
+
with st.expander(f"Could not process {len(errors)} images"):
|
121 |
+
for error in errors:
|
122 |
+
st.write(error)
|
123 |
+
|
124 |
+
if __name__ == "__main__":
|
125 |
+
main()
|