Spaces:
Running
Running
silvanocerza
commited on
Commit
·
587a001
1
Parent(s):
f3fc704
Enhance query pipeline
Browse files
main.py
CHANGED
@@ -97,35 +97,43 @@ def index_files(files):
|
|
97 |
for f in files:
|
98 |
paths.append(f["path"])
|
99 |
metadata.append(f["metadata"])
|
100 |
-
indexing_pipeline.run(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
|
103 |
def search(question: str) -> GeneratedAnswer:
|
104 |
retriever = MemoryBM25Retriever(document_store=document_store(), top_k=5)
|
105 |
|
106 |
-
template =
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
111 |
prompt_builder = PromptBuilder(template)
|
112 |
|
113 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
|
114 |
generator = GPTGenerator(api_key=OPENAI_API_KEY)
|
115 |
answer_builder = AnswerBuilder()
|
116 |
|
117 |
-
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
res =
|
129 |
{
|
130 |
"docs_retriever": {"query": question},
|
131 |
"prompt_builder": {"query": question},
|
|
|
97 |
for f in files:
|
98 |
paths.append(f["path"])
|
99 |
metadata.append(f["metadata"])
|
100 |
+
indexing_pipeline.run(
|
101 |
+
{
|
102 |
+
"converter": {
|
103 |
+
"paths": paths,
|
104 |
+
"metadata": metadata,
|
105 |
+
}
|
106 |
+
}
|
107 |
+
)
|
108 |
|
109 |
|
110 |
def search(question: str) -> GeneratedAnswer:
|
111 |
retriever = MemoryBM25Retriever(document_store=document_store(), top_k=5)
|
112 |
|
113 |
+
template = (
|
114 |
+
"Take a deep breath and think then answer given the context"
|
115 |
+
"Context: {{ documents|map(attribute='text')|replace('\n', ' ')|join(';') }}"
|
116 |
+
"Question: {{ query }}"
|
117 |
+
"Answer:"
|
118 |
+
)
|
119 |
prompt_builder = PromptBuilder(template)
|
120 |
|
121 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
|
122 |
generator = GPTGenerator(api_key=OPENAI_API_KEY)
|
123 |
answer_builder = AnswerBuilder()
|
124 |
|
125 |
+
query_pipeline = Pipeline()
|
126 |
|
127 |
+
query_pipeline.add_component("docs_retriever", retriever)
|
128 |
+
query_pipeline.add_component("prompt_builder", prompt_builder)
|
129 |
+
query_pipeline.add_component("gpt35", generator)
|
130 |
+
query_pipeline.add_component("answer_builder", answer_builder)
|
131 |
|
132 |
+
query_pipeline.connect("docs_retriever.documents", "prompt_builder.documents")
|
133 |
+
query_pipeline.connect("prompt_builder.prompt", "gpt35.prompt")
|
134 |
+
query_pipeline.connect("docs_retriever.documents", "answer_builder.documents")
|
135 |
+
query_pipeline.connect("gpt35.replies", "answer_builder.replies")
|
136 |
+
res = query_pipeline.run(
|
137 |
{
|
138 |
"docs_retriever": {"query": question},
|
139 |
"prompt_builder": {"query": question},
|