Spaces:
Running
Running
import os.path | |
from functools import lru_cache | |
import cv2 | |
import numpy as np | |
from huggingface_hub import HfApi, HfFileSystem, hf_hub_download | |
from imgutils.data import ImageTyping | |
from imgutils.utils import open_onnx_model | |
hf_client = HfApi() | |
hf_fs = HfFileSystem() | |
def _get_available_models(): | |
for f in hf_fs.glob('deepghs/text_detection/*/end2end.onnx'): | |
yield os.path.relpath(f, 'deepghs/text_detection').split('/')[0] | |
_ALL_MODELS = list(_get_available_models()) | |
_DEFAULT_MODEL = 'dbnetpp_resnet50-oclip_fpnc_1200e_icdar2015' | |
def _get_onnx_session(model): | |
return open_onnx_model(hf_hub_download( | |
'deepghs/text_detection', | |
f'{model}/end2end.onnx' | |
)) | |
def detect_text(image: ImageTyping, model: str = _DEFAULT_MODEL, threshold: float = 0.05): | |
origin_width, origin_height = width, height = image.size | |
align = 32 | |
if width % align != 0: | |
width += (align - width % align) | |
if height % align != 0: | |
height += (align - height % align) | |
input_ = np.array(image).transpose((2, 0, 1)).astype(np.float32) / 255.0 | |
# noinspection PyTypeChecker | |
input_ = np.pad(input_[None, ...], ((0, 0), (0, 0), (0, height - origin_height), (0, width - origin_width))) | |
def _normalize(data, mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)): | |
mean, std = np.asarray(mean), np.asarray(std) | |
return (data - mean[None, :, None, None]) / std[None, :, None, None] | |
ort = _get_onnx_session(model) | |
input_ = _normalize(input_).astype(np.float32) | |
output_, = ort.run(['output'], {'input': input_}) | |
heatmap = output_[0] | |
heatmap = heatmap[:origin_height, :origin_width] | |
cnts = cv2.findContours((heatmap * 255.0).astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
cnts = cnts[0] if len(cnts) == 2 else cnts[1] | |
bboxes = [] | |
for c in cnts: | |
x, y, w, h = cv2.boundingRect(c) | |
x0, y0 = x, y | |
x1, y1 = x + w, y + h | |
area = heatmap[y0:y1, x0:x1] | |
valid_area = area[area >= 1e-4] | |
score = valid_area.mean().item() | |
if score >= threshold: | |
bboxes.append(((x0, y0, x1, y1), 'text', score)) | |
return bboxes | |