narugo1992
dev(narugo): add same mode
d96108e
raw
history blame
3.47 kB
import glob
import os.path
import tempfile
import gradio as gr
from PIL import Image
from attack import Attacker, make_args
def attack_given_image(image: Image.Image, target: str, steps: int, eps: float, step_size: float,
progress=gr.Progress()):
if image.mode != 'RGB':
image = image.convert('RGB')
with tempfile.TemporaryDirectory() as td_input, tempfile.TemporaryDirectory() as td_output:
image_filename = os.path.join(td_input, 'image.png')
image.save(image_filename)
def _step_func(current_step: int):
progress(current_step / steps)
args = make_args([
image_filename,
'--out_dir', str(td_output),
'--target', target,
'--eps', str(eps),
'--step_size', str(step_size),
'--steps', str(steps),
])
attacker = Attacker(args)
before_prediction = attacker.image_predict(image)
attacker.attack(args.inputs, _step_func)
output_filename, *_ = glob.glob(os.path.join(td_output, '*.png'))
output_image = Image.open(output_filename)
after_prediction = attacker.image_predict(output_image)
return before_prediction, after_prediction, output_image
if __name__ == '__main__':
with gr.Blocks() as demo:
with gr.Row():
gr.HTML('<p style=\'font-size: 18px; text-align: center;\'>'
' Too slow? Try this locally: '
' <a href="https://github.com/7eu7d7/anime-ai-detect-fucker" '
' style=\'text-decoration: underline;\'>'
' Github - 7eu7d7/anime-ai-detect-fucker'
' </a>.'
' or'
' <a href="https://colab.research.google.com/drive/1bzoZtE28Y8vfmjuaxXKdh-fr4K0WWSmf?usp=sharing" '
' target="_parent">'
' <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>'
' </a>'
'</p>')
with gr.Row():
with gr.Column():
gr_input_image = gr.Image(type='pil', label='Original Image')
with gr.Row():
gr_attack_target = gr.Radio(['auto', 'ai', 'human', 'same'], value='auto', label='Attack Target')
gr_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label='Steps')
with gr.Row():
gr_eps = gr.Slider(label="eps (Noise intensity)", minimum=1, maximum=16, step=1, value=1)
gr_noise_step_size = gr.Slider(label="Noise step size", minimum=0.001, maximum=16, step=0.001,
value=0.136)
gr_btn_submit = gr.Button(value='Attack This Image', variant='primary')
with gr.Column():
with gr.Row():
gr_before_prediction = gr.Label(label='Before Prediction')
gr_after_prediction = gr.Label(label='After Prediction')
gr_output_image = gr.Image(type='pil', label='Attacked Image')
gr_btn_submit.click(
attack_given_image,
inputs=[gr_input_image, gr_attack_target, gr_steps, gr_eps, gr_noise_step_size],
outputs=[gr_before_prediction, gr_after_prediction, gr_output_image],
)
demo.queue(os.cpu_count()).launch()