tango2 / diffusers /tests /models /test_models_unet_2d_condition.py
deepanway's picture
add required files
6b448ad
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import os
import tempfile
import unittest
import torch
from parameterized import parameterized
from diffusers import UNet2DConditionModel
from diffusers.models.attention_processor import LoRAAttnProcessor
from diffusers.utils import (
floats_tensor,
load_hf_numpy,
logging,
require_torch_gpu,
slow,
torch_all_close,
torch_device,
)
from diffusers.utils.import_utils import is_xformers_available
from ..test_modeling_common import ModelTesterMixin
logger = logging.get_logger(__name__)
torch.backends.cuda.matmul.allow_tf32 = False
def create_lora_layers(model):
lora_attn_procs = {}
for name in model.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = model.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(model.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = model.config.block_out_channels[block_id]
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
lora_attn_procs[name] = lora_attn_procs[name].to(model.device)
# add 1 to weights to mock trained weights
with torch.no_grad():
lora_attn_procs[name].to_q_lora.up.weight += 1
lora_attn_procs[name].to_k_lora.up.weight += 1
lora_attn_procs[name].to_v_lora.up.weight += 1
lora_attn_procs[name].to_out_lora.up.weight += 1
return lora_attn_procs
class UNet2DConditionModelTests(ModelTesterMixin, unittest.TestCase):
model_class = UNet2DConditionModel
@property
def dummy_input(self):
batch_size = 4
num_channels = 4
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
encoder_hidden_states = floats_tensor((batch_size, 4, 32)).to(torch_device)
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states}
@property
def input_shape(self):
return (4, 32, 32)
@property
def output_shape(self):
return (4, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": (32, 64),
"down_block_types": ("CrossAttnDownBlock2D", "DownBlock2D"),
"up_block_types": ("UpBlock2D", "CrossAttnUpBlock2D"),
"cross_attention_dim": 32,
"attention_head_dim": 8,
"out_channels": 4,
"in_channels": 4,
"layers_per_block": 2,
"sample_size": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_enable_works(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.enable_xformers_memory_efficient_attention()
assert (
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__
== "XFormersAttnProcessor"
), "xformers is not enabled"
@unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS")
def test_gradient_checkpointing(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
assert not model.is_gradient_checkpointing and model.training
out = model(**inputs_dict).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
labels = torch.randn_like(out)
loss = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
model_2 = self.model_class(**init_dict)
# clone model
model_2.load_state_dict(model.state_dict())
model_2.to(torch_device)
model_2.enable_gradient_checkpointing()
assert model_2.is_gradient_checkpointing and model_2.training
out_2 = model_2(**inputs_dict).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_2.zero_grad()
loss_2 = (out_2 - labels).mean()
loss_2.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_2).abs() < 1e-5)
named_params = dict(model.named_parameters())
named_params_2 = dict(model_2.named_parameters())
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5))
def test_model_with_attention_head_dim_tuple(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_model_with_use_linear_projection(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["use_linear_projection"] = True
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_model_with_cross_attention_dim_tuple(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["cross_attention_dim"] = (32, 32)
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_model_with_simple_projection(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
batch_size, _, _, sample_size = inputs_dict["sample"].shape
init_dict["class_embed_type"] = "simple_projection"
init_dict["projection_class_embeddings_input_dim"] = sample_size
inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device)
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_model_with_class_embeddings_concat(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
batch_size, _, _, sample_size = inputs_dict["sample"].shape
init_dict["class_embed_type"] = "simple_projection"
init_dict["projection_class_embeddings_input_dim"] = sample_size
init_dict["class_embeddings_concat"] = True
inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device)
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_model_attention_slicing(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
model.set_attention_slice("auto")
with torch.no_grad():
output = model(**inputs_dict)
assert output is not None
model.set_attention_slice("max")
with torch.no_grad():
output = model(**inputs_dict)
assert output is not None
model.set_attention_slice(2)
with torch.no_grad():
output = model(**inputs_dict)
assert output is not None
def test_model_sliceable_head_dim(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
model = self.model_class(**init_dict)
def check_sliceable_dim_attr(module: torch.nn.Module):
if hasattr(module, "set_attention_slice"):
assert isinstance(module.sliceable_head_dim, int)
for child in module.children():
check_sliceable_dim_attr(child)
# retrieve number of attention layers
for module in model.children():
check_sliceable_dim_attr(module)
def test_special_attn_proc(self):
class AttnEasyProc(torch.nn.Module):
def __init__(self, num):
super().__init__()
self.weight = torch.nn.Parameter(torch.tensor(num))
self.is_run = False
self.number = 0
self.counter = 0
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, number=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
query = attn.to_q(hidden_states)
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
hidden_states += self.weight
self.is_run = True
self.counter += 1
self.number = number
return hidden_states
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
model = self.model_class(**init_dict)
model.to(torch_device)
processor = AttnEasyProc(5.0)
model.set_attn_processor(processor)
model(**inputs_dict, cross_attention_kwargs={"number": 123}).sample
assert processor.counter == 12
assert processor.is_run
assert processor.number == 123
def test_lora_processors(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
sample1 = model(**inputs_dict).sample
lora_attn_procs = {}
for name in model.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = model.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(model.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = model.config.block_out_channels[block_id]
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
# add 1 to weights to mock trained weights
with torch.no_grad():
lora_attn_procs[name].to_q_lora.up.weight += 1
lora_attn_procs[name].to_k_lora.up.weight += 1
lora_attn_procs[name].to_v_lora.up.weight += 1
lora_attn_procs[name].to_out_lora.up.weight += 1
# make sure we can set a list of attention processors
model.set_attn_processor(lora_attn_procs)
model.to(torch_device)
# test that attn processors can be set to itself
model.set_attn_processor(model.attn_processors)
with torch.no_grad():
sample2 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample
sample3 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
sample4 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
assert (sample1 - sample2).abs().max() < 1e-4
assert (sample3 - sample4).abs().max() < 1e-4
# sample 2 and sample 3 should be different
assert (sample2 - sample3).abs().max() > 1e-4
def test_lora_save_load(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
lora_attn_procs = create_lora_layers(model)
model.set_attn_processor(lora_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
new_model.load_attn_procs(tmpdirname)
with torch.no_grad():
new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
assert (sample - new_sample).abs().max() < 1e-4
# LoRA and no LoRA should NOT be the same
assert (sample - old_sample).abs().max() > 1e-4
def test_lora_save_load_safetensors(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
lora_attn_procs = {}
for name in model.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = model.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(model.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = model.config.block_out_channels[block_id]
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
lora_attn_procs[name] = lora_attn_procs[name].to(model.device)
# add 1 to weights to mock trained weights
with torch.no_grad():
lora_attn_procs[name].to_q_lora.up.weight += 1
lora_attn_procs[name].to_k_lora.up.weight += 1
lora_attn_procs[name].to_v_lora.up.weight += 1
lora_attn_procs[name].to_out_lora.up.weight += 1
model.set_attn_processor(lora_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=True)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
new_model.load_attn_procs(tmpdirname)
with torch.no_grad():
new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
assert (sample - new_sample).abs().max() < 1e-4
# LoRA and no LoRA should NOT be the same
assert (sample - old_sample).abs().max() > 1e-4
def test_lora_save_safetensors_load_torch(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = {}
for name in model.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = model.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(model.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = model.config.block_out_channels[block_id]
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
lora_attn_procs[name] = lora_attn_procs[name].to(model.device)
model.set_attn_processor(lora_attn_procs)
# Saving as torch, properly reloads with directly filename
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
new_model.load_attn_procs(tmpdirname, weight_name="pytorch_lora_weights.bin")
def test_lora_save_torch_force_load_safetensors_error(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = {}
for name in model.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = model.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(model.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = model.config.block_out_channels[block_id]
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
lora_attn_procs[name] = lora_attn_procs[name].to(model.device)
model.set_attn_processor(lora_attn_procs)
# Saving as torch, properly reloads with directly filename
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.to(torch_device)
with self.assertRaises(IOError) as e:
new_model.load_attn_procs(tmpdirname, use_safetensors=True)
self.assertIn("Error no file named pytorch_lora_weights.safetensors", str(e.exception))
def test_lora_on_off(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
old_sample = model(**inputs_dict).sample
lora_attn_procs = create_lora_layers(model)
model.set_attn_processor(lora_attn_procs)
with torch.no_grad():
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample
model.set_default_attn_processor()
with torch.no_grad():
new_sample = model(**inputs_dict).sample
assert (sample - new_sample).abs().max() < 1e-4
assert (sample - old_sample).abs().max() < 1e-4
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_lora_xformers_on_off(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["attention_head_dim"] = (8, 16)
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
lora_attn_procs = create_lora_layers(model)
model.set_attn_processor(lora_attn_procs)
# default
with torch.no_grad():
sample = model(**inputs_dict).sample
model.enable_xformers_memory_efficient_attention()
on_sample = model(**inputs_dict).sample
model.disable_xformers_memory_efficient_attention()
off_sample = model(**inputs_dict).sample
assert (sample - on_sample).abs().max() < 1e-4
assert (sample - off_sample).abs().max() < 1e-4
@slow
class UNet2DConditionModelIntegrationTests(unittest.TestCase):
def get_file_format(self, seed, shape):
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_latents(self, seed=0, shape=(4, 4, 64, 64), fp16=False):
dtype = torch.float16 if fp16 else torch.float32
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
return image
def get_unet_model(self, fp16=False, model_id="CompVis/stable-diffusion-v1-4"):
revision = "fp16" if fp16 else None
torch_dtype = torch.float16 if fp16 else torch.float32
model = UNet2DConditionModel.from_pretrained(
model_id, subfolder="unet", torch_dtype=torch_dtype, revision=revision
)
model.to(torch_device).eval()
return model
def test_set_attention_slice_auto(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
unet = self.get_unet_model()
unet.set_attention_slice("auto")
latents = self.get_latents(33)
encoder_hidden_states = self.get_encoder_hidden_states(33)
timestep = 1
with torch.no_grad():
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 5 * 10**9
def test_set_attention_slice_max(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
unet = self.get_unet_model()
unet.set_attention_slice("max")
latents = self.get_latents(33)
encoder_hidden_states = self.get_encoder_hidden_states(33)
timestep = 1
with torch.no_grad():
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 5 * 10**9
def test_set_attention_slice_int(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
unet = self.get_unet_model()
unet.set_attention_slice(2)
latents = self.get_latents(33)
encoder_hidden_states = self.get_encoder_hidden_states(33)
timestep = 1
with torch.no_grad():
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 5 * 10**9
def test_set_attention_slice_list(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
# there are 32 sliceable layers
slice_list = 16 * [2, 3]
unet = self.get_unet_model()
unet.set_attention_slice(slice_list)
latents = self.get_latents(33)
encoder_hidden_states = self.get_encoder_hidden_states(33)
timestep = 1
with torch.no_grad():
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 5 * 10**9
def get_encoder_hidden_states(self, seed=0, shape=(4, 77, 768), fp16=False):
dtype = torch.float16 if fp16 else torch.float32
hidden_states = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
return hidden_states
@parameterized.expand(
[
# fmt: off
[33, 4, [-0.4424, 0.1510, -0.1937, 0.2118, 0.3746, -0.3957, 0.0160, -0.0435]],
[47, 0.55, [-0.1508, 0.0379, -0.3075, 0.2540, 0.3633, -0.0821, 0.1719, -0.0207]],
[21, 0.89, [-0.6479, 0.6364, -0.3464, 0.8697, 0.4443, -0.6289, -0.0091, 0.1778]],
[9, 1000, [0.8888, -0.5659, 0.5834, -0.7469, 1.1912, -0.3923, 1.1241, -0.4424]],
# fmt: on
]
)
@require_torch_gpu
def test_compvis_sd_v1_4(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4")
latents = self.get_latents(seed)
encoder_hidden_states = self.get_encoder_hidden_states(seed)
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)
with torch.no_grad():
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
assert sample.shape == latents.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
@parameterized.expand(
[
# fmt: off
[83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]],
[17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]],
[8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]],
[3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]],
# fmt: on
]
)
@require_torch_gpu
def test_compvis_sd_v1_4_fp16(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4", fp16=True)
latents = self.get_latents(seed, fp16=True)
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)
with torch.no_grad():
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
assert sample.shape == latents.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
@parameterized.expand(
[
# fmt: off
[33, 4, [-0.4430, 0.1570, -0.1867, 0.2376, 0.3205, -0.3681, 0.0525, -0.0722]],
[47, 0.55, [-0.1415, 0.0129, -0.3136, 0.2257, 0.3430, -0.0536, 0.2114, -0.0436]],
[21, 0.89, [-0.7091, 0.6664, -0.3643, 0.9032, 0.4499, -0.6541, 0.0139, 0.1750]],
[9, 1000, [0.8878, -0.5659, 0.5844, -0.7442, 1.1883, -0.3927, 1.1192, -0.4423]],
# fmt: on
]
)
@require_torch_gpu
def test_compvis_sd_v1_5(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5")
latents = self.get_latents(seed)
encoder_hidden_states = self.get_encoder_hidden_states(seed)
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)
with torch.no_grad():
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
assert sample.shape == latents.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
@parameterized.expand(
[
# fmt: off
[83, 4, [-0.2695, -0.1669, 0.0073, -0.3181, -0.1187, -0.1676, -0.1395, -0.5972]],
[17, 0.55, [-0.1290, -0.2588, 0.0551, -0.0916, 0.3286, 0.0238, -0.3669, 0.0322]],
[8, 0.89, [-0.5283, 0.1198, 0.0870, -0.1141, 0.9189, -0.0150, 0.5474, 0.4319]],
[3, 1000, [-0.5601, 0.2411, -0.5435, 0.1268, 1.1338, -0.2427, -0.0280, -1.0020]],
# fmt: on
]
)
@require_torch_gpu
def test_compvis_sd_v1_5_fp16(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5", fp16=True)
latents = self.get_latents(seed, fp16=True)
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)
with torch.no_grad():
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
assert sample.shape == latents.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
@parameterized.expand(
[
# fmt: off
[33, 4, [-0.7639, 0.0106, -0.1615, -0.3487, -0.0423, -0.7972, 0.0085, -0.4858]],
[47, 0.55, [-0.6564, 0.0795, -1.9026, -0.6258, 1.8235, 1.2056, 1.2169, 0.9073]],
[21, 0.89, [0.0327, 0.4399, -0.6358, 0.3417, 0.4120, -0.5621, -0.0397, -1.0430]],
[9, 1000, [0.1600, 0.7303, -1.0556, -0.3515, -0.7440, -1.2037, -1.8149, -1.8931]],
# fmt: on
]
)
@require_torch_gpu
def test_compvis_sd_inpaint(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting")
latents = self.get_latents(seed, shape=(4, 9, 64, 64))
encoder_hidden_states = self.get_encoder_hidden_states(seed)
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)
with torch.no_grad():
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
assert sample.shape == (4, 4, 64, 64)
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
@parameterized.expand(
[
# fmt: off
[83, 4, [-0.1047, -1.7227, 0.1067, 0.0164, -0.5698, -0.4172, -0.1388, 1.1387]],
[17, 0.55, [0.0975, -0.2856, -0.3508, -0.4600, 0.3376, 0.2930, -0.2747, -0.7026]],
[8, 0.89, [-0.0952, 0.0183, -0.5825, -0.1981, 0.1131, 0.4668, -0.0395, -0.3486]],
[3, 1000, [0.4790, 0.4949, -1.0732, -0.7158, 0.7959, -0.9478, 0.1105, -0.9741]],
# fmt: on
]
)
@require_torch_gpu
def test_compvis_sd_inpaint_fp16(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting", fp16=True)
latents = self.get_latents(seed, shape=(4, 9, 64, 64), fp16=True)
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)
with torch.no_grad():
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
assert sample.shape == (4, 4, 64, 64)
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
@parameterized.expand(
[
# fmt: off
[83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]],
[17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]],
[8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]],
[3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]],
# fmt: on
]
)
@require_torch_gpu
def test_stabilityai_sd_v2_fp16(self, seed, timestep, expected_slice):
model = self.get_unet_model(model_id="stabilityai/stable-diffusion-2", fp16=True)
latents = self.get_latents(seed, shape=(4, 4, 96, 96), fp16=True)
encoder_hidden_states = self.get_encoder_hidden_states(seed, shape=(4, 77, 1024), fp16=True)
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)
with torch.no_grad():
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
assert sample.shape == latents.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)