Spaces:
Running
on
Zero
Running
on
Zero
hungchiayu1
commited on
Commit
·
df31906
1
Parent(s):
86a3494
Created tango2 pipeline
Browse files
app.py
CHANGED
@@ -11,6 +11,165 @@ from pydub import AudioSegment
|
|
11 |
from gradio import Markdown
|
12 |
import spaces
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# Automatic device detection
|
15 |
if torch.cuda.is_available():
|
16 |
device_type = "cuda"
|
@@ -79,13 +238,22 @@ class Tango:
|
|
79 |
# Initialize TANGO
|
80 |
|
81 |
tango = Tango(device="cpu")
|
82 |
-
|
83 |
-
tango.
|
84 |
-
tango.model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
@spaces.GPU(duration=60)
|
87 |
def gradio_generate(prompt, output_format, steps, guidance):
|
88 |
-
output_wave =
|
|
|
89 |
# output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav"
|
90 |
output_filename = "temp.wav"
|
91 |
wavio.write(output_filename, output_wave, rate=16000, sampwidth=2)
|
|
|
11 |
from gradio import Markdown
|
12 |
import spaces
|
13 |
|
14 |
+
import torch
|
15 |
+
from diffusers.models.autoencoder_kl import AutoencoderKL
|
16 |
+
from diffusers.models.unet_2d_condition import UNet2DConditionModel
|
17 |
+
from diffusers import DiffusionPipeline,AudioPipelineOutput
|
18 |
+
from transformers import CLIPTextModel, T5EncoderModel, AutoModel, T5Tokenizer, T5TokenizerFast
|
19 |
+
from typing import Union
|
20 |
+
from diffusers.utils.torch_utils import randn_tensor
|
21 |
+
from tqdm import tqdm
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
class Tango2Pipeline(DiffusionPipeline):
|
28 |
+
|
29 |
+
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
vae: AutoencoderKL,
|
33 |
+
text_encoder: T5EncoderModel,
|
34 |
+
tokenizer: Union[T5Tokenizer, T5TokenizerFast],
|
35 |
+
unet: UNet2DConditionModel,
|
36 |
+
scheduler: DDPMScheduler
|
37 |
+
):
|
38 |
+
|
39 |
+
super().__init__()
|
40 |
+
|
41 |
+
self.register_modules(vae=vae,
|
42 |
+
text_encoder=text_encoder,
|
43 |
+
tokenizer=tokenizer,
|
44 |
+
unet=unet,
|
45 |
+
scheduler=scheduler
|
46 |
+
)
|
47 |
+
|
48 |
+
|
49 |
+
def _encode_prompt(self, prompt):
|
50 |
+
device = self.text_encoder.device
|
51 |
+
|
52 |
+
batch = self.tokenizer(
|
53 |
+
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
|
54 |
+
)
|
55 |
+
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
|
56 |
+
|
57 |
+
|
58 |
+
encoder_hidden_states = self.text_encoder(
|
59 |
+
input_ids=input_ids, attention_mask=attention_mask
|
60 |
+
)[0]
|
61 |
+
|
62 |
+
boolean_encoder_mask = (attention_mask == 1).to(device)
|
63 |
+
|
64 |
+
return encoder_hidden_states, boolean_encoder_mask
|
65 |
+
|
66 |
+
def _encode_text_classifier_free(self, prompt, num_samples_per_prompt):
|
67 |
+
device = self.text_encoder.device
|
68 |
+
batch = self.tokenizer(
|
69 |
+
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
|
70 |
+
)
|
71 |
+
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
|
72 |
+
|
73 |
+
with torch.no_grad():
|
74 |
+
prompt_embeds = self.text_encoder(
|
75 |
+
input_ids=input_ids, attention_mask=attention_mask
|
76 |
+
)[0]
|
77 |
+
|
78 |
+
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
79 |
+
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
|
80 |
+
|
81 |
+
# get unconditional embeddings for classifier free guidance
|
82 |
+
uncond_tokens = [""] * len(prompt)
|
83 |
+
|
84 |
+
max_length = prompt_embeds.shape[1]
|
85 |
+
uncond_batch = self.tokenizer(
|
86 |
+
uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt",
|
87 |
+
)
|
88 |
+
uncond_input_ids = uncond_batch.input_ids.to(device)
|
89 |
+
uncond_attention_mask = uncond_batch.attention_mask.to(device)
|
90 |
+
|
91 |
+
with torch.no_grad():
|
92 |
+
negative_prompt_embeds = self.text_encoder(
|
93 |
+
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
|
94 |
+
)[0]
|
95 |
+
|
96 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
97 |
+
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
|
98 |
+
|
99 |
+
# For classifier free guidance, we need to do two forward passes.
|
100 |
+
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
|
101 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
102 |
+
prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
|
103 |
+
boolean_prompt_mask = (prompt_mask == 1).to(device)
|
104 |
+
|
105 |
+
return prompt_embeds, boolean_prompt_mask
|
106 |
+
|
107 |
+
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
|
108 |
+
shape = (batch_size, num_channels_latents, 256, 16)
|
109 |
+
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
|
110 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
111 |
+
latents = latents * inference_scheduler.init_noise_sigma
|
112 |
+
return latents
|
113 |
+
|
114 |
+
@torch.no_grad()
|
115 |
+
def inference(self, prompt, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1,
|
116 |
+
disable_progress=True):
|
117 |
+
device = self.text_encoder.device
|
118 |
+
classifier_free_guidance = guidance_scale > 1.0
|
119 |
+
batch_size = len(prompt) * num_samples_per_prompt
|
120 |
+
|
121 |
+
if classifier_free_guidance:
|
122 |
+
prompt_embeds, boolean_prompt_mask = self._encode_text_classifier_free(prompt, num_samples_per_prompt)
|
123 |
+
else:
|
124 |
+
prompt_embeds, boolean_prompt_mask = self._encode_text(prompt)
|
125 |
+
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
126 |
+
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)
|
127 |
+
|
128 |
+
inference_scheduler.set_timesteps(num_steps, device=device)
|
129 |
+
timesteps = inference_scheduler.timesteps
|
130 |
+
|
131 |
+
num_channels_latents = self.unet.config.in_channels
|
132 |
+
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device)
|
133 |
+
|
134 |
+
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
|
135 |
+
progress_bar = tqdm(range(num_steps), disable=disable_progress)
|
136 |
+
|
137 |
+
for i, t in enumerate(timesteps):
|
138 |
+
# expand the latents if we are doing classifier free guidance
|
139 |
+
latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
|
140 |
+
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)
|
141 |
+
|
142 |
+
noise_pred = self.unet(
|
143 |
+
latent_model_input, t, encoder_hidden_states=prompt_embeds,
|
144 |
+
encoder_attention_mask=boolean_prompt_mask
|
145 |
+
).sample
|
146 |
+
|
147 |
+
# perform guidance
|
148 |
+
if classifier_free_guidance:
|
149 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
150 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
151 |
+
|
152 |
+
# compute the previous noisy sample x_t -> x_t-1
|
153 |
+
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample
|
154 |
+
|
155 |
+
# call the callback, if provided
|
156 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
|
157 |
+
progress_bar.update(1)
|
158 |
+
|
159 |
+
return latents
|
160 |
+
|
161 |
+
@torch.no_grad()
|
162 |
+
def __call__(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True):
|
163 |
+
""" Genrate audio for a single prompt string. """
|
164 |
+
with torch.no_grad():
|
165 |
+
latents = self.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
|
166 |
+
mel = self.vae.decode_first_stage(latents)
|
167 |
+
wave = self.vae.decode_to_waveform(mel)
|
168 |
+
|
169 |
+
|
170 |
+
return AudioPipelineOutput(audios=wave)
|
171 |
+
|
172 |
+
|
173 |
# Automatic device detection
|
174 |
if torch.cuda.is_available():
|
175 |
device_type = "cuda"
|
|
|
238 |
# Initialize TANGO
|
239 |
|
240 |
tango = Tango(device="cpu")
|
241 |
+
|
242 |
+
pipe = Tango2Pipeline(vae=tango.vae,
|
243 |
+
text_encoder=tango.model.text_encoder,
|
244 |
+
tokenizer=tango.model.tokenizer,
|
245 |
+
unet=tango.model.unet,
|
246 |
+
scheduler=tango.scheduler
|
247 |
+
)
|
248 |
+
pipe.to(device)
|
249 |
+
#tango.vae.to(device_type)
|
250 |
+
#tango.stft.to(device_type)
|
251 |
+
#tango.model.to(device_type)
|
252 |
|
253 |
@spaces.GPU(duration=60)
|
254 |
def gradio_generate(prompt, output_format, steps, guidance):
|
255 |
+
output_wave = pipe(prompt,steps,guidance) ## Using pipeliine automatically uses flash attention for torch2.0 above
|
256 |
+
#output_wave = tango.generate(prompt, steps, guidance)
|
257 |
# output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav"
|
258 |
output_filename = "temp.wav"
|
259 |
wavio.write(output_filename, output_wave, rate=16000, sampwidth=2)
|