Spaces:
Sleeping
Sleeping
# coding: utf-8 | |
""" | |
Spade decoder(G) defined in the paper, which input the warped feature to generate the animated image. | |
""" | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from .util import SPADEResnetBlock | |
class SPADEDecoder(nn.Module): | |
def __init__(self, upscale=1, max_features=256, block_expansion=64, out_channels=64, num_down_blocks=2): | |
for i in range(num_down_blocks): | |
input_channels = min(max_features, block_expansion * (2 ** (i + 1))) | |
self.upscale = upscale | |
super().__init__() | |
norm_G = 'spadespectralinstance' | |
label_num_channels = input_channels # 256 | |
self.fc = nn.Conv2d(input_channels, 2 * input_channels, 3, padding=1) | |
self.G_middle_0 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels) | |
self.G_middle_1 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels) | |
self.G_middle_2 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels) | |
self.G_middle_3 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels) | |
self.G_middle_4 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels) | |
self.G_middle_5 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels) | |
self.up_0 = SPADEResnetBlock(2 * input_channels, input_channels, norm_G, label_num_channels) | |
self.up_1 = SPADEResnetBlock(input_channels, out_channels, norm_G, label_num_channels) | |
self.up = nn.Upsample(scale_factor=2) | |
if self.upscale is None or self.upscale <= 1: | |
self.conv_img = nn.Conv2d(out_channels, 3, 3, padding=1) | |
else: | |
self.conv_img = nn.Sequential( | |
nn.Conv2d(out_channels, 3 * (2 * 2), kernel_size=3, padding=1), | |
nn.PixelShuffle(upscale_factor=2) | |
) | |
def forward(self, feature): | |
seg = feature # Bx256x64x64 | |
x = self.fc(feature) # Bx512x64x64 | |
x = self.G_middle_0(x, seg) | |
x = self.G_middle_1(x, seg) | |
x = self.G_middle_2(x, seg) | |
x = self.G_middle_3(x, seg) | |
x = self.G_middle_4(x, seg) | |
x = self.G_middle_5(x, seg) | |
x = self.up(x) # Bx512x64x64 -> Bx512x128x128 | |
x = self.up_0(x, seg) # Bx512x128x128 -> Bx256x128x128 | |
x = self.up(x) # Bx256x128x128 -> Bx256x256x256 | |
x = self.up_1(x, seg) # Bx256x256x256 -> Bx64x256x256 | |
x = self.conv_img(F.leaky_relu(x, 2e-1)) # Bx64x256x256 -> Bx3xHxW | |
x = torch.sigmoid(x) # Bx3xHxW | |
return x |