Spaces:
Sleeping
Sleeping
File size: 5,548 Bytes
a891a57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
# coding: utf-8
"""
The module that predicting a dense motion from sparse motion representation given by kp_source and kp_driving
"""
from torch import nn
import torch.nn.functional as F
import torch
from .util import Hourglass, make_coordinate_grid, kp2gaussian
class DenseMotionNetwork(nn.Module):
def __init__(self, block_expansion, num_blocks, max_features, num_kp, feature_channel, reshape_depth, compress, estimate_occlusion_map=True):
super(DenseMotionNetwork, self).__init__()
self.hourglass = Hourglass(block_expansion=block_expansion, in_features=(num_kp+1)*(compress+1), max_features=max_features, num_blocks=num_blocks) # ~60+G
self.mask = nn.Conv3d(self.hourglass.out_filters, num_kp + 1, kernel_size=7, padding=3) # 65G! NOTE: computation cost is large
self.compress = nn.Conv3d(feature_channel, compress, kernel_size=1) # 0.8G
self.norm = nn.BatchNorm3d(compress, affine=True)
self.num_kp = num_kp
self.flag_estimate_occlusion_map = estimate_occlusion_map
if self.flag_estimate_occlusion_map:
self.occlusion = nn.Conv2d(self.hourglass.out_filters*reshape_depth, 1, kernel_size=7, padding=3)
else:
self.occlusion = None
def create_sparse_motions(self, feature, kp_driving, kp_source):
bs, _, d, h, w = feature.shape # (bs, 4, 16, 64, 64)
identity_grid = make_coordinate_grid((d, h, w), ref=kp_source) # (16, 64, 64, 3)
identity_grid = identity_grid.view(1, 1, d, h, w, 3) # (1, 1, d=16, h=64, w=64, 3)
coordinate_grid = identity_grid - kp_driving.view(bs, self.num_kp, 1, 1, 1, 3)
k = coordinate_grid.shape[1]
# NOTE: there lacks an one-order flow
driving_to_source = coordinate_grid + kp_source.view(bs, self.num_kp, 1, 1, 1, 3) # (bs, num_kp, d, h, w, 3)
# adding background feature
identity_grid = identity_grid.repeat(bs, 1, 1, 1, 1, 1)
sparse_motions = torch.cat([identity_grid, driving_to_source], dim=1) # (bs, 1+num_kp, d, h, w, 3)
return sparse_motions
def create_deformed_feature(self, feature, sparse_motions):
bs, _, d, h, w = feature.shape
feature_repeat = feature.unsqueeze(1).unsqueeze(1).repeat(1, self.num_kp+1, 1, 1, 1, 1, 1) # (bs, num_kp+1, 1, c, d, h, w)
feature_repeat = feature_repeat.view(bs * (self.num_kp+1), -1, d, h, w) # (bs*(num_kp+1), c, d, h, w)
sparse_motions = sparse_motions.view((bs * (self.num_kp+1), d, h, w, -1)) # (bs*(num_kp+1), d, h, w, 3)
sparse_deformed = F.grid_sample(feature_repeat, sparse_motions, align_corners=False)
sparse_deformed = sparse_deformed.view((bs, self.num_kp+1, -1, d, h, w)) # (bs, num_kp+1, c, d, h, w)
return sparse_deformed
def create_heatmap_representations(self, feature, kp_driving, kp_source):
spatial_size = feature.shape[3:] # (d=16, h=64, w=64)
gaussian_driving = kp2gaussian(kp_driving, spatial_size=spatial_size, kp_variance=0.01) # (bs, num_kp, d, h, w)
gaussian_source = kp2gaussian(kp_source, spatial_size=spatial_size, kp_variance=0.01) # (bs, num_kp, d, h, w)
heatmap = gaussian_driving - gaussian_source # (bs, num_kp, d, h, w)
# adding background feature
zeros = torch.zeros(heatmap.shape[0], 1, spatial_size[0], spatial_size[1], spatial_size[2]).type(heatmap.type()).to(heatmap.device)
heatmap = torch.cat([zeros, heatmap], dim=1)
heatmap = heatmap.unsqueeze(2) # (bs, 1+num_kp, 1, d, h, w)
return heatmap
def forward(self, feature, kp_driving, kp_source):
bs, _, d, h, w = feature.shape # (bs, 32, 16, 64, 64)
feature = self.compress(feature) # (bs, 4, 16, 64, 64)
feature = self.norm(feature) # (bs, 4, 16, 64, 64)
feature = F.relu(feature) # (bs, 4, 16, 64, 64)
out_dict = dict()
# 1. deform 3d feature
sparse_motion = self.create_sparse_motions(feature, kp_driving, kp_source) # (bs, 1+num_kp, d, h, w, 3)
deformed_feature = self.create_deformed_feature(feature, sparse_motion) # (bs, 1+num_kp, c=4, d=16, h=64, w=64)
# 2. (bs, 1+num_kp, d, h, w)
heatmap = self.create_heatmap_representations(deformed_feature, kp_driving, kp_source) # (bs, 1+num_kp, 1, d, h, w)
input = torch.cat([heatmap, deformed_feature], dim=2) # (bs, 1+num_kp, c=5, d=16, h=64, w=64)
input = input.view(bs, -1, d, h, w) # (bs, (1+num_kp)*c=105, d=16, h=64, w=64)
prediction = self.hourglass(input)
mask = self.mask(prediction)
mask = F.softmax(mask, dim=1) # (bs, 1+num_kp, d=16, h=64, w=64)
out_dict['mask'] = mask
mask = mask.unsqueeze(2) # (bs, num_kp+1, 1, d, h, w)
sparse_motion = sparse_motion.permute(0, 1, 5, 2, 3, 4) # (bs, num_kp+1, 3, d, h, w)
deformation = (sparse_motion * mask).sum(dim=1) # (bs, 3, d, h, w) mask take effect in this place
deformation = deformation.permute(0, 2, 3, 4, 1) # (bs, d, h, w, 3)
out_dict['deformation'] = deformation
if self.flag_estimate_occlusion_map:
bs, _, d, h, w = prediction.shape
prediction_reshape = prediction.view(bs, -1, h, w)
occlusion_map = torch.sigmoid(self.occlusion(prediction_reshape)) # Bx1x64x64
out_dict['occlusion_map'] = occlusion_map
return out_dict
|