Spaces:
Running
Running
import streamlit as st | |
from transformers import (AutoTokenizer, TFAutoModelForSequenceClassification, | |
pipeline) | |
st.title("CS-GY-6613 Project Milestone 2") | |
model_choices = ( | |
"distilbert-base-uncased-finetuned-sst-2-english", | |
"j-hartmann/emotion-english-distilroberta-base", | |
"joeddav/distilbert-base-uncased-go-emotions-student", | |
) | |
with st.form("Input Form"): | |
text = st.text_area("Write your text here:", "CS-GY-6613 is a great course!") | |
model_name = st.selectbox("Select a model:", model_choices) | |
submitted = st.form_submit_button("Submit") | |
if submitted: | |
model = TFAutoModelForSequenceClassification.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) | |
res = classifier(text) | |
label = res[0]["label"].upper() | |
score = res[0]["score"] | |
st.markdown( | |
f"This text was classified as **{label}** with a confidence score of **{score}**." | |
) | |