Switti-1024 / app.py
dbaranchuk's picture
Update app.py
6aa405b verified
raw
history blame
5.27 kB
import gradio as gr
import numpy as np
import random
import spaces
from models import SwittiPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "yresearch/Switti"
pipe = SwittiPipeline.from_pretrained(model_repo_id, device=device)
MAX_SEED = np.iinfo(np.int32).max
@spaces.GPU(duration=65)
def infer(
prompt,
negative_prompt="",
seed=42,
randomize_seed=False,
guidance_scale=4.0,
top_k=400,
top_p=0.95,
more_smooth=True,
smooth_start_si=2,
turn_off_cfg_start_si=10,
more_diverse=True,
last_scale_temp=1,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
turn_on_cfg_start_si = 2 if more_diverse else 0
image = pipe(
prompt=prompt,
null_prompt=negative_prompt,
cfg=guidance_scale,
top_p=top_p,
top_k=top_k,
more_smooth=more_smooth,
smooth_start_si=smooth_start_si,
turn_off_cfg_start_si=turn_off_cfg_start_si,
turn_on_cfg_start_si=turn_on_cfg_start_si,
seed=seed,
last_scale_temp=last_scale_temp,
)[0]
return image, seed
examples = [
"Cute winter dragon baby, kawaii, Pixar, ultra detailed, glacial background, extremely realistic.",
"A cosmonaut under the starry sky in a purple radiation zone against the background of huge Amanita mushrooms in the style of dark botanical",
"The Mandalorian by masamune shirow, fighting stance, in the snow, cinematic lighting, intricate detail, character design",
"A small house on a mountain top",
"A lighthouse in a giant wave, origami style.",
"Sci-fi cosmic diarama of a quasar and jellyfish in a resin cube, volumetric lighting, high resolution, hdr, sharpen, Photorealism",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # [Switti](https://yandex-research.github.io/switti)")
gr.Markdown("[Learn more](https://yandex-research.github.io/switti) about Switti.")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
seed = gr.Number(
label="Seed",
minimum=0,
maximum=MAX_SEED,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.,
step=0.5,
value=4.,
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
with gr.Row():
top_k = gr.Slider(
label="Sampling top k",
minimum=10,
maximum=1000,
step=10,
value=400,
)
top_p = gr.Slider(
label="Sampling top p",
minimum=0.0,
maximum=1.,
step=0.01,
value=0.95,
)
with gr.Row():
more_smooth = gr.Checkbox(label="Smoothing with Gumbel softmax sampling", value=True)
smooth_start_si = gr.Slider(
label="Smoothing starting scale",
minimum=0,
maximum=10,
step=1,
value=2,
)
turn_off_cfg_start_si = gr.Slider(
label="Disable CFG starting scale",
minimum=0,
maximum=10,
step=1,
value=8,
)
with gr.Row():
more_diverse = gr.Checkbox(label="More diverse", value=False)
last_scale_temp = gr.Slider(
label="Temperature after disabling CFG",
minimum=0.1,
maximum=10,
step=0.1,
value=0.1,
)
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False)# cache_mode="lazy")
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
guidance_scale,
top_k,
top_p,
more_smooth,
smooth_start_si,
turn_off_cfg_start_si,
more_diverse,
last_scale_temp,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()