Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,751 Bytes
3d50a9a 55ca09f 3d50a9a 55ca09f 3d50a9a 55ca09f 3d50a9a 55ca09f 3d50a9a 55ca09f 1e17711 b5f551b 3d50a9a 1e17711 3d50a9a 55ca09f 1e17711 55ca09f b925a10 55ca09f 3d50a9a bd71dc3 3d50a9a 55ca09f 3d50a9a 55ca09f feb9f84 55ca09f 3d50a9a 55ca09f 3d50a9a 55ca09f 3d50a9a 55ca09f 3d50a9a 55ca09f 3d50a9a 55ca09f 3d50a9a 55ca09f 1e17711 55ca09f 3d50a9a 55ca09f 3d50a9a 1e17711 b5f551b 1e17711 feb9f84 1e17711 3d50a9a b5f551b 3d50a9a 55ca09f 1e17711 3d50a9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import gradio as gr
import numpy as np
import random
import spaces
from models import SwittiPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "yresearch/Switti"
pipe = SwittiPipeline.from_pretrained(model_repo_id, device=device)
MAX_SEED = np.iinfo(np.int32).max
@spaces.GPU(duration=65)
def infer(
prompt,
negative_prompt="",
seed=42,
randomize_seed=False,
guidance_scale=4.0,
top_k=400,
top_p=0.95,
more_smooth=True,
smooth_start_si=2,
turn_off_cfg_start_si=10,
more_diverse=True,
last_scale_temp=1,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
turn_on_cfg_start_si = 2 if more_diverse else 0
image = pipe(
prompt=prompt,
null_prompt=negative_prompt,
cfg=guidance_scale,
top_p=top_p,
top_k=top_k,
more_smooth=more_smooth,
smooth_start_si=smooth_start_si,
turn_off_cfg_start_si=turn_off_cfg_start_si,
turn_on_cfg_start_si=turn_on_cfg_start_si,
seed=seed,
last_scale_temp=last_scale_temp,
)[0]
return image, seed
examples = ["Cute winter dragon baby, kawaii, Pixar, ultra detailed, glacial background, extremely realistic."]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # [Switti](https://yandex-research.github.io/switti)")
gr.Markdown("[Learn more](https://yandex-research.github.io/switti) about Switti.")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
seed = gr.Number(
label="Seed",
minimum=0,
maximum=MAX_SEED,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.,
step=0.5,
value=4.,
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
with gr.Row():
top_k = gr.Slider(
label="Sampling top k",
minimum=10,
maximum=1000,
step=10,
value=400,
)
top_p = gr.Slider(
label="Sampling top p",
minimum=0.0,
maximum=1.,
step=0.01,
value=0.95,
)
with gr.Row():
more_smooth = gr.Checkbox(label="Smoothing with Gumbel softmax sampling", value=True)
smooth_start_si = gr.Slider(
label="Smoothing starting scale",
minimum=0,
maximum=10,
step=1,
value=2,
)
turn_off_cfg_start_si = gr.Slider(
label="Disable CFG starting scale",
minimum=0,
maximum=10,
step=1,
value=8,
)
with gr.Row():
more_diverse = gr.Checkbox(label="More diverse", value=True)
last_scale_temp = gr.Slider(
label="Temperature after disabling CFG",
minimum=0.1,
maximum=10,
step=0.1,
value=0.1,
)
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False)# cache_mode="lazy")
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
guidance_scale,
top_k,
top_p,
more_smooth,
smooth_start_si,
turn_off_cfg_start_si,
more_diverse,
last_scale_temp,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|