Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,268 Bytes
55ca09f 1dc27f0 55ca09f 1dc27f0 55ca09f 1dc27f0 55ca09f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
"""
References:
- VectorQuantizer2: https://github.com/CompVis/taming-transformers/blob/3ba01b241669f5ade541ce990f7650a3b8f65318/taming/modules/vqvae/quantize.py#L110
- GumbelQuantize: https://github.com/CompVis/taming-transformers/blob/3ba01b241669f5ade541ce990f7650a3b8f65318/taming/modules/vqvae/quantize.py#L213
- VQVAE (VQModel): https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/models/autoencoder.py#L14
"""
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
import torch
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin
from .basic_vae import Decoder, Encoder
from .quant import VectorQuantizer2
from models.helpers import RESOLUTION_PATCH_NUMS_MAPPING
class VQVAE(nn.Module):
def __init__(
self,
vocab_size=4096,
z_channels=32,
ch=160,
dropout=0.0,
beta=0.25, # commitment loss weight
using_znorm=False, # whether to normalize when computing the nearest neighbors
quant_conv_ks=3, # quant conv kernel size
quant_resi=0.5, # 0.5 means \phi(x) = 0.5conv(x) + (1-0.5)x
share_quant_resi=4, # use 4 \phi layers for K scales: partially-shared \phi
default_qresi_counts=0, # if is 0: automatically set to len(v_patch_nums)
# number of patches for each scale, h_{1 to K} = w_{1 to K} = v_patch_nums[k]
v_patch_nums=(1, 2, 3, 4, 5, 6, 8, 10, 13, 16),
test_mode=True,
):
super().__init__()
self.test_mode = test_mode
self.V, self.Cvae = vocab_size, z_channels
# ddconfig is copied from https://github.com/CompVis/latent-diffusion/blob/e66308c7f2e64cb581c6d27ab6fbeb846828253b/models/first_stage_models/vq-f16/config.yaml
ddconfig = dict(
dropout=dropout,
ch=ch,
z_channels=z_channels,
in_channels=3,
ch_mult=(1, 1, 2, 2, 4),
num_res_blocks=2, # from vq-f16/config.yaml above
using_sa=True,
using_mid_sa=True, # from vq-f16/config.yaml above
# resamp_with_conv=True, # always True, removed.
)
ddconfig.pop("double_z", None) # only KL-VAE should use double_z=True
self.encoder = Encoder(double_z=False, **ddconfig)
self.decoder = Decoder(**ddconfig)
self.vocab_size = vocab_size
self.downsample = 2 ** (len(ddconfig["ch_mult"]) - 1)
self.quantize: VectorQuantizer2 = VectorQuantizer2(
vocab_size=vocab_size,
Cvae=self.Cvae,
using_znorm=using_znorm,
beta=beta,
default_qresi_counts=default_qresi_counts,
v_patch_nums=v_patch_nums,
quant_resi=quant_resi,
share_quant_resi=share_quant_resi,
)
self.quant_conv = torch.nn.Conv2d(
self.Cvae, self.Cvae, quant_conv_ks, stride=1, padding=quant_conv_ks // 2
)
self.post_quant_conv = torch.nn.Conv2d(
self.Cvae, self.Cvae, quant_conv_ks, stride=1, padding=quant_conv_ks // 2
)
if self.test_mode:
self.eval()
[p.requires_grad_(False) for p in self.parameters()]
# ===================== `forward` is only used in VAE training =====================
def forward(self, inp, ret_usages=False): # -> rec_B3HW, idx_N, loss
VectorQuantizer2.forward
f_hat, usages, vq_loss = self.quantize(
self.quant_conv(self.encoder(inp)), ret_usages=ret_usages
)
return self.decoder(self.post_quant_conv(f_hat)), usages, vq_loss
# ===================== `forward` is only used in VAE training =====================
def fhat_to_img(self, f_hat: torch.Tensor):
return self.decoder(self.post_quant_conv(f_hat)).clamp_(-1, 1)
def img_to_idxBl(
self,
inp_img_no_grad: torch.Tensor,
v_patch_nums: Optional[Sequence[Union[int, Tuple[int, int]]]] = None,
noise_std: Optional[float] = None,
) -> List[torch.LongTensor]: # return List[Bl]
f = self.quant_conv(self.encoder(inp_img_no_grad))
return self.quantize.f_to_idxBl_or_fhat(
f, to_fhat=False, v_patch_nums=v_patch_nums, noise_std=noise_std,
)
def idxBl_to_img(
self, ms_idx_Bl: List[torch.Tensor], same_shape: bool, last_one=False
) -> Union[List[torch.Tensor], torch.Tensor]:
B = ms_idx_Bl[0].shape[0]
ms_h_BChw = []
for idx_Bl in ms_idx_Bl:
l = idx_Bl.shape[1]
pn = round(l**0.5)
ms_h_BChw.append(
self.quantize.embedding(idx_Bl)
.transpose(1, 2)
.view(B, self.Cvae, pn, pn)
)
return self.embed_to_img(
ms_h_BChw=ms_h_BChw, all_to_max_scale=same_shape, last_one=last_one
)
def embed_to_img(
self, ms_h_BChw: List[torch.Tensor], all_to_max_scale: bool, last_one=False
) -> Union[List[torch.Tensor], torch.Tensor]:
if last_one:
return self.decoder(
self.post_quant_conv(
self.quantize.embed_to_fhat(
ms_h_BChw, all_to_max_scale=all_to_max_scale, last_one=True
)
)
).clamp_(-1, 1)
else:
return [
self.decoder(self.post_quant_conv(f_hat)).clamp_(-1, 1)
for f_hat in self.quantize.embed_to_fhat(
ms_h_BChw, all_to_max_scale=all_to_max_scale, last_one=False
)
]
def img_to_reconstructed_img(
self,
x,
v_patch_nums: Optional[Sequence[Union[int, Tuple[int, int]]]] = None,
last_one=False,
) -> List[torch.Tensor]:
f = self.quant_conv(self.encoder(x))
ls_f_hat_BChw = self.quantize.f_to_idxBl_or_fhat(
f, to_fhat=True, v_patch_nums=v_patch_nums
)
if last_one:
return self.decoder(self.post_quant_conv(ls_f_hat_BChw[-1])).clamp_(-1, 1)
else:
return [
self.decoder(self.post_quant_conv(f_hat)).clamp_(-1, 1)
for f_hat in ls_f_hat_BChw
]
def load_state_dict(self, state_dict: Dict[str, Any], strict=True, assign=False):
if (
"quantize.ema_vocab_hit_SV" in state_dict
and state_dict["quantize.ema_vocab_hit_SV"].shape[0]
!= self.quantize.ema_vocab_hit_SV.shape[0]
):
state_dict["quantize.ema_vocab_hit_SV"] = self.quantize.ema_vocab_hit_SV
return super().load_state_dict(
state_dict=state_dict, strict=strict, assign=assign
)
class VQVAEHF(VQVAE, PyTorchModelHubMixin):
def __init__(
self,
vocab_size=4096,
z_channels=32,
ch=160,
test_mode=True,
share_quant_resi=4,
reso=1024,
):
v_patch_nums = tuple((int(x) for x in RESOLUTION_PATCH_NUMS_MAPPING[reso].split("_")))
super().__init__(
vocab_size=vocab_size,
z_channels=z_channels,
ch=ch,
test_mode=test_mode,
share_quant_resi=share_quant_resi,
v_patch_nums=v_patch_nums,
)
|