File size: 8,550 Bytes
dad05a4
c07585b
 
 
 
 
 
 
 
 
dad05a4
c07585b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50e76ab
c07585b
 
 
 
 
 
 
 
dad05a4
c07585b
50e76ab
c07585b
c64e06b
c07585b
1e87b71
7b56590
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import gradio as gr
import torch
import json
import pandas as pd
import numpy as np
from transformers import AutoTokenizer, RobertaForTokenClassification
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from json import JSONEncoder
from faker import Faker

class out_json():
    def __init__(self, w,l):
        self.word = w
        self.label = l
class MyEncoder(JSONEncoder):
        def default(self, o):
            return o.__dict__
class Model:
   def __init__(self):
        self.texto=""
        self.idioma=""
        self.modelo_ner=""
        self.categoria_texto=""
        
   def identificacion_idioma(self,text): 
        self.texto=text
        tokenizer = AutoTokenizer.from_pretrained("papluca/xlm-roberta-base-language-detection")
        model = AutoModelForSequenceClassification.from_pretrained("papluca/xlm-roberta-base-language-detection")
        
        inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
        
        with torch.no_grad():
            logits = model(**inputs).logits
        
        preds = torch.softmax(logits, dim=-1)
        
       
        id2lang = model.config.id2label
        vals, idxs = torch.max(preds, dim=1)
        
       
        
        #retorna el idioma con mayor porcentaje
        maximo=vals.max()
        idioma=''
        porcentaje=0
        for k, v in zip(idxs, vals):
           if v.item()==maximo:
             idioma,porcentaje=id2lang[k.item()],v.item()
             
           
        if idioma=='es':
             self.idioma="es"
             self.modelo_ner='BSC-LT/roberta_model_for_anonimization'
             self.faker_ = Faker('es_MX')
             self.model = RobertaForTokenClassification.from_pretrained(self.modelo_ner)     
        else:
             self.idioma="en"
             self.faker_ = Faker('en_US')
             self.modelo_ner="FacebookAI/xlm-roberta-large-finetuned-conll03-english"     
             self.model = AutoModelForTokenClassification.from_pretrained(self.modelo_ner)   
        self.categorizar_texto(self.texto)
   def reordenacion_tokens(self,tokens):
        
        i=0
        new_tokens=[]
        ig_tokens=[] #ignorar estos indices del array de indentificadores
        for token in tokens:
            ind=len(new_tokens)
            if i<len(tokens):
                 if  token.startswith("▁"):
                    
                    new_tokens.append(token)
                    
                    i=i+1
                 else:
                    new_tokens[ind-1] = (new_tokens[ind-1] + token)
                    ig_tokens.append(i)
                    
                    i=i+1
        return (
                new_tokens,
                ig_tokens
                )  
        
   def reordenacion_identificadores(self,ig_tokens,predicted_tokens_classes):
        x=0
        new_identificadores=[]
        for token in predicted_tokens_classes:
            
            if x not in ig_tokens:
                new_identificadores.append(token)
                x=x+1
            else:
                 x=x+1
        return new_identificadores
   def salida_json(self,tokens,pre_tokens):
       list=[]
       i=0
       for t in tokens:
           if pre_tokens[i]!='O':
              a = out_json(t.replace('▁','').replace('Ġ',''),pre_tokens[i].replace('▁',''))
              list.append(a)
           i=i+1
       return MyEncoder().encode(list)   
   def salida_texto( self,tokens,pre_tokens):
        new_labels = []
        current_word = None
        i=0
        for token in tokens:
               
            if pre_tokens[i]=='O' or 'MISC' in pre_tokens[i]:
              new_labels.append(' ' +token.replace('▁',''))
            else:
               new_labels.append(' ' + pre_tokens[i])
            i=i+1 
        a=''    
        for i in new_labels:
            a = a+i
        return a    
        #return new_labels  
   def salida_texto_anonimizado(self, ids,pre_tokens):
    new_labels = []
    current_word = None
    i=0
    for identificador in pre_tokens:
       
        if identificador=='O' or 'OTH' in identificador:
            new_labels.append(self.tokenizer.decode(ids[i]))
        else:
            new_labels.append(' ' + identificador)
        i=i+1
    a=''
    for i in new_labels:
        a = a+i
    return a    
   def formato_salida(self,out):
       a=""
       for i in out:
          a = a + i.replace('▁','').replace(' ','') + ' '
       return  a  
   def fake_pers(self):
       return self.faker_.name(self)
   def fake_word(self):
       return self.faker_.word()
   def fake_first_name(self):
       return self.faker_.first_name()       
   def fake_last_name(self):
       return self.faker_.last_name()    
   def fake_address(self):
       return self.faker_.address()
   def fake_sentence(self,n):
       return self.faker_.sentence(nb_words=n)
   def fake_text(self):
       return self.faker_.text()
   def fake_company(self):
       return self.faker_.company() 
   def fake_city(self):
       return self.faker_.city()     
   def reemplazo_fake(self,identificadores):
       new_iden=[]
       for id in identificadores:
           
           if 'PER' in id:
               new_iden.append(self.fake_first_name())
           
           elif 'ORG' in id:
               new_iden.append(self.fake_company())
           
           elif 'LOC' in id:
               new_iden.append(self.fake_city())
           else:
               new_iden.append(id)
       return new_iden
   def categorizar_texto(self,texto):
        name="elozano/bert-base-cased-news-category"       
        tokenizer = AutoTokenizer.from_pretrained(name)
        model_ = AutoModelForSequenceClassification.from_pretrained(name)
        
        inputs_ = tokenizer(texto, padding=True, truncation=True, return_tensors="pt")
        
        with torch.no_grad():
            logits = model_(**inputs_).logits
        
        preds = torch.softmax(logits, dim=-1)
        
       
        id2lang = model_.config.id2label
        vals, idxs = torch.max(preds, dim=1)
        
        #retorna el idioma con mayor porcentaje
        maximo=vals.max()
        cat=''
        self.categoria_texto=''
        porcentaje=0
        for k, v in zip(idxs, vals):
           if v.item()==maximo:
             cat,porcentaje=id2lang[k.item()],v.item()
             self.categoria_texto=cat  
             
        
        return  cat, porcentaje      
   def predict(self):
        
        categoria, porcentaje = self.categorizar_texto(self.texto)
        print(categoria, porcentaje)
       
        self.tokenizer  = AutoTokenizer.from_pretrained(self.modelo_ner)
        tokens = self.tokenizer.tokenize(self.texto)
       
        ids = self.tokenizer.convert_tokens_to_ids(tokens)
        
        input_ids = torch.tensor([ids])
        with torch.no_grad():
           logits = self.model(input_ids).logits
        
        predicted_token_class_ids = logits.argmax(-1)
        
        predicted_tokens_classes = [self.model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
        
        labels = predicted_token_class_ids
        loss = self.model(input_ids, labels=labels).loss
      
        if (self.idioma=='es'):
            
           
            out1 = self.salida_json(tokens,predicted_tokens_classes) #spanish solo palabras sensibles
                        
            out2 = self.salida_texto_anonimizado(ids,self.reemplazo_fake(predicted_tokens_classes)) #español texto completo    
            
        else:
            
            new_tokens,ig_tokens=self.reordenacion_tokens(tokens)
            new_identificadores = self.reordenacion_identificadores(ig_tokens,predicted_tokens_classes)
           
            out1 = self.salida_json(new_tokens,new_identificadores),
           
            
            
            out2 = self.salida_texto(new_tokens,self.reemplazo_fake(new_identificadores))
            
           
        return (
          
            self.texto[:1869],
            out1,
            str(out2)
           
            
        )  
model = Model()
def get_model():
        return model

def procesar(texto):
    model.identificacion_idioma(texto[:1869])
    
    return model.predict()

demo = gr.Interface(fn=procesar, inputs="text", outputs=[gr.Textbox(label="texto in"),gr.Textbox(label="identificadores"),gr.Textbox(label="texto procesado")])
demo.launch(share=True)