sachacks2023 / app.py
dawng88's picture
Update app.py
991eece
raw
history blame
352 Bytes
import streamlit as st
from transformers import pipeline
from transformers import BertTokenizer
text = st.text_area('Sentiment Analysis Model - SacHacks2023 | Text to analyze:')
classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
if text:
out = classifier(text)
st.json(out)