Upload model.py
Browse files
model.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
CIFAR 10
|
3 |
+
INPUT - [3, 32, 32]
|
4 |
+
"""
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
|
8 |
+
class BasicBlock(nn.Module):
|
9 |
+
def __init__(self, in_channel, out_channel, dropout):
|
10 |
+
super(BasicBlock, self).__init__()
|
11 |
+
self.cblock = nn.Sequential(
|
12 |
+
*[
|
13 |
+
self._get_base_layer(
|
14 |
+
in_channel if i == 0 else out_channel, out_channel, dropout
|
15 |
+
)
|
16 |
+
for i in range(2)
|
17 |
+
]
|
18 |
+
)
|
19 |
+
|
20 |
+
def _get_base_layer(self, in_channel, out_channel, dropout):
|
21 |
+
return nn.Sequential(
|
22 |
+
nn.Conv2d(
|
23 |
+
in_channel,
|
24 |
+
out_channel,
|
25 |
+
kernel_size=3,
|
26 |
+
padding=1,
|
27 |
+
padding_mode="replicate",
|
28 |
+
bias=False,
|
29 |
+
),
|
30 |
+
nn.BatchNorm2d(out_channel),
|
31 |
+
nn.ReLU(),
|
32 |
+
nn.Dropout(dropout),
|
33 |
+
)
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
return self.cblock(x) + x
|
37 |
+
|
38 |
+
|
39 |
+
class DavidPageNet(nn.Module):
|
40 |
+
def __init__(self, channels=[64, 128, 256, 512], dropout=0.01):
|
41 |
+
super(DavidPageNet, self).__init__()
|
42 |
+
self.block0 = self._get_base_layer(3, channels[0], pool=False)
|
43 |
+
self.block1 = nn.Sequential(
|
44 |
+
*[
|
45 |
+
self._get_base_layer(channels[0], channels[1]),
|
46 |
+
BasicBlock(channels[1], channels[1], dropout),
|
47 |
+
]
|
48 |
+
)
|
49 |
+
|
50 |
+
self.block2 = self._get_base_layer(channels[1], channels[2])
|
51 |
+
self.block3 = nn.Sequential(
|
52 |
+
*[
|
53 |
+
self._get_base_layer(channels[2], channels[3]),
|
54 |
+
BasicBlock(channels[3], channels[3], dropout),
|
55 |
+
]
|
56 |
+
)
|
57 |
+
|
58 |
+
self.logit = nn.Sequential(
|
59 |
+
nn.MaxPool2d(4),
|
60 |
+
nn.Flatten(),
|
61 |
+
nn.Linear(512, 10),
|
62 |
+
)
|
63 |
+
|
64 |
+
def _get_base_layer(self, in_channel, out_channel, pool=True):
|
65 |
+
return nn.Sequential(
|
66 |
+
nn.Conv2d(
|
67 |
+
in_channel,
|
68 |
+
out_channel,
|
69 |
+
stride=1,
|
70 |
+
padding=1,
|
71 |
+
kernel_size=3,
|
72 |
+
bias=False,
|
73 |
+
padding_mode="replicate",
|
74 |
+
),
|
75 |
+
nn.MaxPool2d(2) if pool else nn.Identity(),
|
76 |
+
nn.BatchNorm2d(out_channel),
|
77 |
+
nn.ReLU(),
|
78 |
+
)
|
79 |
+
|
80 |
+
def forward(self, x):
|
81 |
+
x = self.block0(x)
|
82 |
+
|
83 |
+
x = self.block1(x)
|
84 |
+
x = self.block2(x)
|
85 |
+
x = self.block3(x)
|
86 |
+
|
87 |
+
return self.logit(x)
|