|
import os |
|
|
|
import gradio as gr |
|
|
|
from src.run.unet.inference import ResUnetInfer |
|
|
|
|
|
infer = ResUnetInfer( |
|
model_path="./checkpoint/resunet/decoder.pt", |
|
config_path="./src/models/unet/config/resnet_config.yml", |
|
) |
|
|
|
demo = gr.Interface( |
|
fn=infer.infer, |
|
inputs=[ |
|
gr.Image( |
|
shape=(224, 224), |
|
label="Input Image", |
|
value="./sample/dog.jpeg", |
|
), |
|
gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
value=0.5, |
|
label="Mask Transparency", |
|
info="Mask transparency for image segmentation overlay", |
|
), |
|
], |
|
outputs=[ |
|
gr.Image(), |
|
], |
|
examples=[ |
|
[os.path.join("./sample/", f)] |
|
for f in os.listdir("./sample/") |
|
], |
|
) |
|
|
|
|
|
demo.launch() |