File size: 11,647 Bytes
2b5689e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import random
import plotly.graph_objects as go

file_result_score = 'ko_bench.csv'

file_full_lb = 'mt_bench_240805.csv'


# read csv
df_result_score = pd.read_csv(file_result_score)
df_full_lb = pd.read_csv(file_full_lb)


# dataframe
df = pd.DataFrame(df_result_score)
df_rs = pd.DataFrame(df_result_score)
df_full_lboard = pd.DataFrame(df_full_lb)

df_full_lboard.replace('GPT-4-1106-preview', 'gpt-4-0125-preview', inplace=True) # MT-bench์˜ GPT-4-1106-preview ๋ฅผ  gpt-4-0125-preview๋กœ ๋ณ€๊ฒฝ
models = df_full_lboard['Model'].unique() # ์—ด ์ถ”๊ฐ€๋ฅผ ์œ„ํ•œ models ๋ฆฌ์ŠคํŠธ
df_rs.replace("", np.nan, inplace=True)  # ๋ชจ๋ธ๋ณ„ turn1,2 score ํ•ฉ๋ณ‘

def custom_mean(series):
    numeric_series = pd.to_numeric(series, errors='coerce') # ์‹œ๋ฆฌ์ฆˆ๋ฅผ ์ˆซ์ž๋กœ ๋ณ€ํ™˜
    return numeric_series.mean() if not numeric_series.isna().all() else np.nan # NaN์ด ์•„๋‹Œ ๊ฐ’์ด ํ•˜๋‚˜๋ผ๋„ ์žˆ์œผ๋ฉด ํ‰๊ท  ๊ณ„์‚ฐ

def get_mt_bench(model): # ๋Œ€์†Œ๋ฌธ์ž ๋ฌด์‹œํ•˜๊ณ  ๋ชจ๋ธ์„ ๋งค์นญํ•˜๊ธฐ ์œ„ํ•œ ํ•จ์ˆ˜ ์ •์˜
    model_lower = model.lower()
    matching_rows = df_full_lboard[df_full_lboard['Model'].str.lower() == model_lower]
    if not matching_rows.empty:
        return matching_rows['MT-bench (score)'].values[0]
    return ''

def get_organization(model): # ๋Œ€์†Œ๋ฌธ์ž ๋ฌด์‹œํ•˜๊ณ  ๋ชจ๋ธ์„ ๋งค์นญํ•˜๊ธฐ ์œ„ํ•œ ํ•จ์ˆ˜ ์ •์˜
    if pd.Series(model).str.contains('mistral-large', case=False, regex=True).any():
        return 'Mistral'
    elif pd.Series(model).str.contains('koni-llama3-8b', case=False, regex=True).any():
        return 'KISTI'

    model_lower = model.lower()
    matching_rows = df_full_lboard[df_full_lboard['Model'].str.lower() == model_lower]
    if not matching_rows.empty:
        return matching_rows['Organization'].values[0]
    return ''

def get_license(model): # ๋Œ€์†Œ๋ฌธ์ž ๋ฌด์‹œํ•˜๊ณ  ๋ชจ๋ธ์„ ๋งค์นญํ•˜๊ธฐ ์œ„ํ•œ ํ•จ์ˆ˜ ์ •์˜
    if pd.Series(model).str.contains('mistral-large', case=False, regex=True).any():
        return 'Apache-2.0'
    elif pd.Series(model).str.contains('koni-llama3-8b', case=False, regex=True).any():
        return 'llama3'

    model_lower = model.lower()
    matching_rows = df_full_lboard[df_full_lboard['Model'].str.lower() == model_lower]
    if not matching_rows.empty:
        return matching_rows['License'].values[0]
    return ''


# dataframe_full
df_full_rs = df_rs.copy()
df_full_rs.rename(columns={'score': 'KO-Bench'}, inplace=True)
df_full_rs = df_full_rs.drop(columns=['Coding', 'Extraction', 'Humanities', 'Math', 'Reasoning', 'Roleplay', 'STEM', 'Writing'])

df_full_rs = df_full_rs.drop(columns=['turn']) # ๋ชจ๋ธ๋ณ„ turn1,2 score ํ•ฉ๋ณ‘
df_full_rs = df_full_rs.groupby(['model', 'judge_model']).agg({col: custom_mean for col in df_full_rs.columns if col not in ['model', 'judge_model']}).reset_index()
df_full_rs = df_full_rs.round(2)
df_full_rs.replace("", np.nan, inplace=True)

df_full_rs['KO-Bench/openai'] = '' # KO-Bench/openai, KO-Bench/keval ์—ด ์ถ”๊ฐ€
df_full_rs['KO-Bench/keval'] = ''
for idx, j_model in df_full_rs['judge_model'].items():
    if j_model == 'keval':
        df_full_rs.at[idx, 'KO-Bench/keval'] = df_full_rs.at[idx, 'KO-Bench']
    else :
        df_full_rs.at[idx, 'KO-Bench/openai'] = df_full_rs.at[idx, 'KO-Bench']
df_full_rs = df_full_rs.drop(columns=['judge_model'])

df_full_rs = df_full_rs.groupby(['model']).agg({col: custom_mean for col in df_full_rs.columns if col not in ['model']}).reset_index() # KO-Bench/openai, KO-Bench/keval ํ–‰ ํ•ฉ๋ณ‘
df_full_rs = df_full_rs.round(2)
df_full_rs.replace("", np.nan, inplace=True)

df_full_rs['MT-Bench'] = ''  # MT-Bench ์—ด ์ถ”๊ฐ€
df_full_rs['MT-Bench'] = df_full_rs['model'].apply(get_mt_bench)
df_full_rs['MT-Bench'] = df_full_rs['MT-Bench'].str.replace('-', '', regex=False)

df_full_rs['Organization'] = '' # Organization ์—ด ์ถ”๊ฐ€
df_full_rs['Organization'] = df_full_rs['model'].apply(get_organization)

df_full_rs['License'] = '' # License ์—ด ์ถ”๊ฐ€
df_full_rs['License'] = df_full_rs['model'].apply(get_license)

df_full_rs = df_full_rs.sort_values(by='KO-Bench', ascending=False)
df_full_rs.insert(0, 'rank', range(1, len(df_full_rs) + 1))
df_full_rs = df_full_rs.drop(columns=['KO-Bench'])

plot_models = df_full_rs['model'].unique() # model detail view๋ฅผ ์œ„ํ•œ models ๋ฆฌ์ŠคํŠธ


# dataframe
df_rs['MT-Bench'] = ''  # MT-Bench ์—ด ์ถ”๊ฐ€
df_rs['MT-Bench'] = df_rs['model'].apply(get_mt_bench)
df_rs['MT-Bench'] = df_rs['MT-Bench'].str.replace('-', '', regex=False)

df_rs.replace("", np.nan, inplace=True)  # ๋ชจ๋ธ๋ณ„ turn1,2 score ํ•ฉ๋ณ‘


# dataframe_openai
df_openai = pd.DataFrame(df_rs)
df_openai = df_openai[df_openai['judge_model'] != 'keval']

df_openai = df_openai.drop(columns=['judge_model', 'turn']) # ๋ชจ๋ธ๋ณ„ turn1,2 score ํ•ฉ๋ณ‘
df_openai = df_openai.groupby('model').agg({col: custom_mean for col in df_openai.columns if col != 'model'}).reset_index()
df_openai = df_openai.round(2)

df_openai = df_openai.sort_values(by='score', ascending=False)
df_openai.insert(0, 'rank', range(1, len(df_openai) + 1))


# dataframe_keval
df_keval = pd.DataFrame(df_rs)
df_keval = df_keval[df_keval['judge_model'] == 'keval']

df_keval = df_keval.drop(columns=['judge_model', 'turn']) # ๋ชจ๋ธ๋ณ„ turn1,2 score ํ•ฉ๋ณ‘
df_keval = df_keval.groupby('model').agg({col: custom_mean for col in df_keval.columns if col != 'model'}).reset_index()
df_keval = df_keval.round(2)

df_keval = df_keval.sort_values(by='score', ascending=False)
df_keval.insert(0, 'rank', range(1, len(df_keval) + 1))


# model detail view
plot_models_list = plot_models.tolist()
CATEGORIES = ["Writing", "Roleplay", "Reasoning", "Math", "Coding", "Extraction", "STEM", "Humanities"]
category_labels = ['Selected model turn1', 'Selected model turn2', 'Top1 turn1', 'Top1 turn2']
random.seed(42)

def search_dataframe(query): # df ๊ฒ€์ƒ‰ ํ•จ์ˆ˜ ์ •์˜
    if not query:
        return df  # ๊ฒ€์ƒ‰์–ด๊ฐ€ ์—†์„ ๊ฒฝ์šฐ ์ „์ฒด DataFrame ๋ฐ˜ํ™˜
    filtered_df = df[df.apply(lambda row: any(row.astype(str) == query), axis=1)]
    return filtered_df

def radar_chart(categories, Selected_model_turn1, Selected_model_turn2, Top1_turn1, Top1_turn2): # plot ๊ทธ๋ฆฌ๋Š” ํ•จ์ˆ˜
    #categories = categories.split(',')

    Selected_model_turn1 = [item for sublist in Selected_model_turn1 for item in sublist]
    Selected_model_turn2 = [item for sublist in Selected_model_turn2 for item in sublist]
    Top1_turn1 = [item for sublist in Top1_turn1 for item in sublist]
    Top1_turn2 = [item for sublist in Top1_turn2 for item in sublist]

    values_lists = [
        list(map(float, Selected_model_turn1)),
        list(map(float, Selected_model_turn2)),
        list(map(float, Top1_turn1)),
        list(map(float, Top1_turn2))
    ]

    fig = go.Figure()

    for i, values in enumerate(values_lists):
        if len(categories) != len(values):
            return f"Error in dataset {i+1}: Number of categories and values must be the same."

        fig.add_trace(go.Scatterpolar(
            r=values + [values[0]],  # Closing the loop of the radar chart
            theta=categories + [categories[0]],  # Closing the loop of the radar chart
            mode='lines',
            name=category_labels[i] # Label for the dataset
        ))

    fig.update_layout(
        polar=dict(
            radialaxis=dict(
                visible=True,
                range=[0, max(max(values) for values in values_lists)],
                showline=True,
            ),
            angularaxis=dict(
                rotation=0,
                direction='clockwise'
            )
        ),
        showlegend=True,
        width=555,  # ์ ์ ˆํ•œ ๋„ˆ๋น„ ์„ค์ •
        height=550,  # ์ ์ ˆํ•œ ๋†’์ด ์„ค์ •
        margin=dict(l=1000, r=20, t=20, b=20),
        autosize = False,
        paper_bgcolor='white',
        plot_bgcolor='lightgrey'
    )
    return fig

def search_openai_plot(dropdown_model): # openai plot ํ•จ์ˆ˜ ์ •์˜
    condition1 = (df['judge_model'] != 'keval') & (df['turn'] == 1) & (df['model'] == dropdown_model)
    openai_turn1 = df.loc[condition1, 'Coding':'Writing'].values.tolist()

    condition2 = (df['judge_model'] != 'keval') & (df['turn'] == 2) & (df['model'] == dropdown_model)
    openai_turn2 = df.loc[condition2, 'Coding':'Writing'].values.tolist()

    condition3 = (df['judge_model'] != 'keval') & (df['turn'] == 1) & (df['model'] == df_openai.loc[0,'model'])
    top1_openai_turn1 = df.loc[condition3, 'Coding':'Writing'].values.tolist()

    condition4 = (df['judge_model'] != 'keval') & (df['turn'] == 2) & (df['model'] == df_openai.loc[0,'model'])
    top1_openai_turn2 = df.loc[condition4, 'Coding':'Writing'].values.tolist()

    fig = radar_chart(CATEGORIES, openai_turn1, openai_turn2, top1_openai_turn1, top1_openai_turn2)
    return fig

def search_keval_plot(dropdown_model): # keval plot ํ•จ์ˆ˜ ์ •์˜
    condition1 = (df['judge_model'] == 'keval') & (df['turn'] == 1) & (df['model'] == dropdown_model)
    keval_turn1 = df.loc[condition1, 'Coding':'Writing'].values.tolist()

    condition2 = (df['judge_model'] == 'keval') & (df['turn'] == 2) & (df['model'] == dropdown_model)
    keval_turn2 = df.loc[condition2, 'Coding':'Writing'].values.tolist()

    condition3 = (df['judge_model'] == 'keval') & (df['turn'] == 1) & (df['model'] == df_keval.loc[0,'model'])
    top1_keval_turn1 = df.loc[condition3, 'Coding':'Writing'].values.tolist()

    condition4 = (df['judge_model'] == 'keval') & (df['turn'] == 2) & (df['model'] == df_keval.loc[0,'model'])
    top1_keval_turn2 = df.loc[condition4, 'Coding':'Writing'].values.tolist()

    fig = radar_chart(CATEGORIES, keval_turn1, keval_turn2, top1_keval_turn1, top1_keval_turn2)
    return fig


#gradio
with gr.Blocks() as demo:
    gr.Markdown("")
    gr.Markdown("# ๐Ÿ† KO-Bench Leaderboard")
    gr.Markdown("")
    gr.Markdown("#### The Ko-bench is a leaderboard for evaluating the multi-level conversation ability and instruction-following ability of Korean Large Language Models (LLMs).")
    gr.Markdown("- MT-Bench: a set of challenging multi-turn questions. We use GPT-4 to grade the model responses.")
    gr.Markdown("- KO-Bench/openai: a set of challenging multi-turn questions in Korean. We use GPT-4o to grade the model responses.")
    gr.Markdown("- KO-Bench/keval: a set of challenging multi-turn questions in Korean. We use the keval model as an evaluation model.")
    gr.Markdown("")
    gr.Markdown("github : https://github.com/davidkim205/ko-bench")
    gr.Markdown("keval : https://huggingface.co/collections/davidkim205/k-eval-6660063dd66e21cbdcc4fbf1")    
    gr.Markdown("")

    with gr.TabItem("KO-Bench"):
        gr.Dataframe(value=df_full_rs)
    with gr.TabItem("Openai Judgment"):
        gr.Dataframe(value=df_openai)
    with gr.TabItem("Keval Judgment"):
        gr.Dataframe(value=df_keval)
    with gr.TabItem("Model Detail View"):
        with gr.Blocks():
            with gr.Row():
                dropdown = gr.Dropdown(choices=plot_models_list, label="Choose a Model")
            with gr.Row():
                dataframe = gr.Dataframe(label="Model Detail View")
                dropdown.change(fn=search_dataframe, inputs=dropdown, outputs=dataframe)
            with gr.Row():
                plot_openai = gr.Plot(label="Openai Plot")
                dropdown.change(fn=search_openai_plot, inputs=dropdown, outputs=plot_openai)
            #with gr.Row():
                plot_keval = gr.Plot(label="Keval Plot")
                dropdown.change(fn=search_keval_plot, inputs=dropdown, outputs=plot_keval)

demo.launch(share=True, server_name="0.0.0.0")