davanstrien HF staff commited on
Commit
ddbd137
·
1 Parent(s): fc46fb1

improved description

Browse files
Files changed (1) hide show
  1. app.py +7 -12
app.py CHANGED
@@ -27,7 +27,6 @@ with open("model_configs.json", "r") as f:
27
 
28
  # Extract instruction
29
  extract_input = model_config["extract_input"]
30
-
31
  terminators = [
32
  tokenizer.eos_token_id,
33
  tokenizer.convert_tokens_to_ids("<|eot_id|>"),
@@ -35,7 +34,7 @@ terminators = [
35
 
36
 
37
  @spaces.GPU
38
- def generate_instruction():
39
  instruction = pipeline(
40
  extract_input,
41
  max_new_tokens=2048,
@@ -45,11 +44,13 @@ def generate_instruction():
45
  top_p=1,
46
  )
47
 
48
- return instruction[0]["generated_text"][len(extract_input) :].split("\n")[0]
 
 
49
 
 
50
 
51
- def generate_response(response_template):
52
- return pipeline(
53
  response_template,
54
  max_new_tokens=2048,
55
  eos_token_id=terminators,
@@ -58,13 +59,7 @@ def generate_response(response_template):
58
  top_p=1,
59
  )
60
 
61
-
62
- def generate_instruction_response():
63
- sanitized_instruction = generate_instruction()
64
- response_template = f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{sanitized_instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"""
65
-
66
  user_message = sanitized_instruction
67
- response = generate_response(response_template)
68
  assistant_response = response[0]["generated_text"][len(response_template) :]
69
 
70
  return user_message, assistant_response
@@ -72,7 +67,7 @@ def generate_instruction_response():
72
 
73
  title = "Magpie demo"
74
  description = """
75
- This Gradio demo allows you to explore the approach outlined in the Magpie paper. "Magpie is a data synthesis pipeline that generates high-quality alignment data. Magpie does not rely on prompt engineering or seed questions. Instead, it directly constructs instruction data by prompting aligned LLMs with a pre-query template for sampling instructions." Essentially, instead of prompting the model with a question or a starting query, this approach relies on the pre-query template of the model to generate instructions. Essentially, you are giving the model only the template up to the point where a user instruction would start, and then the model generates the instruction and the response.
76
 
77
  In this demo, you can see how the model generates a user instruction and a model response.
78
 
 
27
 
28
  # Extract instruction
29
  extract_input = model_config["extract_input"]
 
30
  terminators = [
31
  tokenizer.eos_token_id,
32
  tokenizer.convert_tokens_to_ids("<|eot_id|>"),
 
34
 
35
 
36
  @spaces.GPU
37
+ def generate_instruction_response():
38
  instruction = pipeline(
39
  extract_input,
40
  max_new_tokens=2048,
 
44
  top_p=1,
45
  )
46
 
47
+ sanitized_instruction = instruction[0]["generated_text"][
48
+ len(extract_input) :
49
+ ].split("\n")[0]
50
 
51
+ response_template = f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{sanitized_instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"""
52
 
53
+ response = pipeline(
 
54
  response_template,
55
  max_new_tokens=2048,
56
  eos_token_id=terminators,
 
59
  top_p=1,
60
  )
61
 
 
 
 
 
 
62
  user_message = sanitized_instruction
 
63
  assistant_response = response[0]["generated_text"][len(response_template) :]
64
 
65
  return user_message, assistant_response
 
67
 
68
  title = "Magpie demo"
69
  description = """
70
+ This Gradio demo showcases the approach described in the Magpie paper. Magpie is a data synthesis pipeline that creates high-quality alignment data without relying on prompt engineering or seed questions. Instead, it generates instruction data by prompting aligned LLMs with a pre-query template. This method does not prompt the model with a question or starting query. Instead, it uses the model's pre-query template to generate instructions. Essentially, the model is given only the template until a user instruction starts, and then it generates the instruction and the response.
71
 
72
  In this demo, you can see how the model generates a user instruction and a model response.
73